Search results
Results from the WOW.Com Content Network
For example, "1 < 3", "1 is less than 3", and "(1,3) ∈ R less" mean all the same; some authors also write "(1,3) ∈ (<)". Various properties of relations are investigated. A relation R is reflexive if xRx holds for all x, and irreflexive if xRx holds for no x. It is symmetric if xRy always implies yRx, and asymmetric if xRy implies that yRx ...
The image under f of an element x of the domain X is f(x). [6] If A is any subset of X, then the image of A under f, denoted f(A), is the subset of the codomain Y consisting of all images of elements of A, [6] that is, = {()}. The image of f is the image of the whole domain, that is, f(X). [17]
The image of the function is the set of all output values it may produce, that is, the image of . The preimage of f {\displaystyle f} , that is, the preimage of Y {\displaystyle Y} under f {\displaystyle f} , always equals X {\displaystyle X} (the domain of f {\displaystyle f} ); therefore, the former notion is rarely used.
(), where (2n − 1)!! is the double factorial of (2n − 1), which is the product of all odd numbers up to (2n − 1). This series diverges for every finite x , and its meaning as asymptotic expansion is that for any integer N ≥ 1 one has erfc x = e − x 2 x π ∑ n = 0 N − 1 ( − 1 ) n ( 2 n − 1 ) ! !
If an airplane's altitude at time t is a(t), and the air pressure at altitude x is p(x), then (p ∘ a)(t) is the pressure around the plane at time t. Function defined on finite sets which change the order of their elements such as permutations can be composed on the same set, this being composition of permutations.
A bijection from the natural numbers to the integers, which maps 2n to −n and 2n − 1 to n, for n ≥ 0. For any set X, the identity function 1 X: X → X, 1 X (x) = x is bijective. The function f: R → R, f(x) = 2x + 1 is bijective, since for each y there is a unique x = (y − 1)/2 such that f(x) = y.
In mathematics, an injective function (also known as injection, or one-to-one function [1]) is a function f that maps distinct elements of its domain to distinct elements of its codomain; that is, x 1 ≠ x 2 implies f(x 1) ≠ f(x 2) (equivalently by contraposition, f(x 1) = f(x 2) implies x 1 = x 2).
In the mathematics of binary relations, the composition of relations is the forming of a new binary relation R ; S from two given binary relations R and S.In the calculus of relations, the composition of relations is called relative multiplication, [1] and its result is called a relative product.