Search results
Results from the WOW.Com Content Network
In game theory and economics, a mechanism is called incentive-compatible (IC) [1]: 415 if every participant can achieve their own best outcome by reporting their true preferences. [ 1 ] : 225 [ 2 ] For example, there is incentive compatibility if high-risk clients are better off in identifying themselves as high-risk to insurance firms , who ...
Constant sum: A game is a constant sum game if the sum of the payoffs to every player are the same for every single set of strategies. In these games, one player gains if and only if another player loses. A constant sum game can be converted into a zero sum game by subtracting a fixed value from all payoffs, leaving their relative order unchanged.
In game theory, the best response is the strategy (or strategies) which produces the most favorable outcome for a player, taking other players' strategies as given. [1] The concept of a best response is central to John Nash's best-known contribution, the Nash equilibrium, the point at which each player in a game has selected the best response (or one of the best responses) to the other players ...
Game theorists commonly study how the outcome of a game is determined and what factors affect it. In game theory, a strategy is a set of actions that a player can take in response to the actions of others. Each player’s strategy is based on their expectation of what the other players are likely to do, often explained in terms of probability. [2]
Game theory has come to play an increasingly important role in logic and in computer science. Several logical theories have a basis in game semantics. In addition, computer scientists have used games to model interactive computations. Also, game theory provides a theoretical basis to the field of multi-agent systems. [124]
In game theory, a strategy A dominates another strategy B if A will always produces a better result than B, regardless of how any other player plays no matter how that player's opponent or opponents play. Some very simple games (called straightforward games) can be solved using dominance.
The revelation principle is a fundamental result in mechanism design, social choice theory, and game theory which shows it is always possible to design a strategy-resistant implementation of a social decision-making mechanism (such as an electoral system or market). [1] It can be seen as a kind of mirror image to Gibbard's theorem.
The first game is simply sequential―when player 2 makes a choice, both parties are already aware of whether player 1 has chosen O(pera) or F(ootball). The second game is also sequential, but the dotted line shows player 2's information set. This is the common way to show that when player 2 moves, he or she is not aware of what player 1 did.