Search results
Results from the WOW.Com Content Network
Nucleation is a common mechanism which generates ... For example, in the nucleation of ice from ... In addition to the nucleation and growth of crystals e.g. in non ...
For a more diffuse surface, a continuous growth mechanism may require changes over several successive layers simultaneously. Non-uniform lateral growth is a geometrical motion of steps—as opposed to motion of the entire surface normal to itself. Alternatively, uniform normal growth is based on the time sequence of an element of surface.
Classical nucleation theory (CNT) is the most common theoretical model used to quantitatively study the kinetics of nucleation. [1] [2] [3] [4]Nucleation is the first step in the spontaneous formation of a new thermodynamic phase or a new structure, starting from a state of metastability.
Stranski–Krastanov growth (SK growth, also Stransky–Krastanov or 'Stranski–Krastanow') is one of the three primary modes by which thin films grow epitaxially at a crystal surface or interface. Also known as 'layer-plus-island growth', the SK mode follows a two step process: initially, complete films of adsorbates , up to several ...
The vapor–liquid–solid method (VLS) is a mechanism for the growth of one-dimensional structures, such as nanowires, from chemical vapor deposition. The growth of a crystal through direct adsorption of a gas phase on to a solid surface is generally very slow.
Primary nucleation is the initial formation of a crystal where there are no other crystals present or where, if there are crystals present in the system, they do not have any influence on the process. This can occur in two conditions. The first is homogeneous nucleation, which is nucleation that is not influenced in any way by solids.
Initially, nucleation may be random, and growth unhindered, leading to high values for n (3 or 4). Once the nucleation sites are consumed, the formation of new particles will cease. Furthermore, if the distribution of nucleation sites is non-random, then the growth may be restricted to 1 or 2 dimensions.
Apart from the thermal mechanism, nucleation is strongly affected by impurities, dyes, plasticizers, fillers and other additives in the polymer. This is also referred to as heterogeneous nucleation. This effect is poorly understood and irregular, so that the same additive can promote nucleation in one polymer, but not in another.