Search results
Results from the WOW.Com Content Network
Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.
The spectral radius of a finite graph is defined to be the spectral radius of its adjacency matrix.. This definition extends to the case of infinite graphs with bounded degrees of vertices (i.e. there exists some real number C such that the degree of every vertex of the graph is smaller than C).
For instance it is not true that if two power series = and = have the same radius of convergence, then = (+) also has this radius of convergence: if = and = + (), for instance, then both series have the same radius of convergence of 1, but the series = (+) = = has a radius of convergence of 3.
The convergence criteria of the power series then apply, requiring ‖ ‖ to be sufficiently small under the appropriate matrix norm. For more general problems, which cannot be rewritten in such a way that the two matrices commute, the ordering of matrix products produced by repeated application of the Leibniz rule must be tracked.
Excluding these cases, the ratio test can be applied to determine the radius of convergence. If p < q + 1 then the ratio of coefficients tends to zero. This implies that the series converges for any finite value of z and thus defines an entire function of z. An example is the power series for the exponential function.
In mathematics, the Cauchy–Hadamard theorem is a result in complex analysis named after the French mathematicians Augustin Louis Cauchy and Jacques Hadamard, describing the radius of convergence of a power series. It was published in 1821 by Cauchy, [1] but remained relatively unknown until Hadamard rediscovered it. [2]
The utility of Abel's theorem is that it allows us to find the limit of a power series as its argument (that is, ) approaches from below, even in cases where the radius of convergence, , of the power series is equal to and we cannot be sure whether the limit should be finite or not.
When successive powers of a matrix T become small (that is, when all of the entries of T approach zero, upon raising T to successive powers), the matrix T converges to the zero matrix. A regular splitting of a non-singular matrix A results in a convergent matrix T. A semi-convergent splitting of a matrix A results in a semi-convergent matrix T.