enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Commutative property - Wikipedia

    en.wikipedia.org/wiki/Commutative_property

    The Egyptians used the commutative property of multiplication to simplify computing products. [7] [8] Euclid is known to have assumed the commutative property of multiplication in his book Elements. [9] Formal uses of the commutative property arose in the late 18th and early 19th centuries, when mathematicians began to work on a theory of ...

  3. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  4. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  5. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...

  6. Abelian group - Wikipedia

    en.wikipedia.org/wiki/Abelian_group

    To qualify as an abelian group, the set and operation, (,), must satisfy four requirements known as the abelian group axioms (some authors include in the axioms some properties that belong to the definition of an operation: namely that the operation is defined for any ordered pair of elements of A, that the result is well-defined, and that the ...

  7. Field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Field_(mathematics)

    A commutative ring is a set that is equipped with an addition and multiplication operation and satisfies all the axioms of a field, except for the existence of multiplicative inverses a −1. [26] For example, the integers Z form a commutative ring, but not a field: the reciprocal of an integer n is not itself an integer, unless n = ±1.

  8. Local property - Wikipedia

    en.wikipedia.org/wiki/Local_property

    For commutative rings, ideas of algebraic geometry make it natural to take a "small neighborhood" of a ring to be the localization at a prime ideal. In which case, a property is said to be local if it can be detected from the local rings. For instance, being a flat module over a commutative ring is a local property, but being a free module is not

  9. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    The set is called the underlying set of the group, and the operation is called the group operation or the group law. A group and its underlying set are thus two different mathematical objects. To avoid cumbersome notation, it is common to abuse notation by using the same symbol to denote both. This reflects also an informal way of thinking ...