Search results
Results from the WOW.Com Content Network
The electromagnetic tensor, conventionally labelled F, is defined as the exterior derivative of the electromagnetic four-potential, A, a differential 1-form: [1] [2] = . Therefore, F is a differential 2-form— an antisymmetric rank-2 tensor field—on Minkowski space. In component form,
The electromagnetic tensor is the combination of the electric and magnetic fields into a covariant antisymmetric tensor whose entries are B-field quantities. [1] = (/ / / / / /) and the result of raising its indices is = = (/ / / / / /), where E is the electric field, B the magnetic field, and c the speed of light.
If the matter field is taken so as to describe the interaction of electromagnetic fields with the Dirac electron given by the four-component Dirac spinor field ψ, the current and charge densities have form: [2] = † = †, where α are the first three Dirac matrices. Using this, we can re-write Maxwell's equations as:
An electromagnetic field (also EM field) is a physical field, mathematical functions of position and time, representing the influences on and due to electric charges. [1] The field at any point in space and time can be regarded as a combination of an electric field and a magnetic field .
This is often described by saying that the electric field and magnetic field are two interrelated aspects of a single object, called the electromagnetic field. Indeed, the entire electromagnetic field can be represented in a single rank-2 tensor called the electromagnetic tensor; see below.
The electromagnetic field is a covariant antisymmetric tensor of degree 2, which can be defined in terms of the electromagnetic potential by =.. To see that this equation is invariant, we transform the coordinates as described in the classical treatment of tensors: ¯ = ¯ ¯ ¯ ¯ = ¯ (¯) ¯ (¯) = ¯ ¯ + ¯ ¯ ¯ ¯ ¯ ¯ = ¯ ¯ ¯ ¯ = ¯ ¯ = ¯ ¯.
An example of a null field is a plane electromagnetic wave in Minkowski space. A non-null field is characterised by P 2 + Q 2 ≠ 0 {\displaystyle P^{2}+Q^{2}\neq \,0} . If P ≠ 0 = Q {\displaystyle P\neq 0=Q} , there exists an inertial reference frame for which either the electric or magnetic field vanishes.
The discrepancy in the factors arises because the source of the gravitational field is the second order stress–energy tensor, as opposed to the source of the electromagnetic field being the first order four-current tensor. This difference becomes clearer when one compares non-invariance of relativistic mass to electric charge invariance.