enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Slip (materials science) - Wikipedia

    en.wikipedia.org/wiki/Slip_(materials_science)

    Slip systems in zirconium alloys. 𝒃 and 𝒏 are the slip direction and plane, respectively, and 𝝎 is the rotation axis calculated in the present work, orthogonal to both the slip plane normal and slip direction. The crystal direction of the rotation axis vectors is labelled on the IPF colour key.

  3. Critical resolved shear stress - Wikipedia

    en.wikipedia.org/wiki/Critical_resolved_shear_stress

    The Schmid Factor for an axial applied stress in the [] direction, along the primary slip plane of (), with the critical applied shear stress acting in the [] direction can be calculated by quickly determining if any of the dot product between the axial applied stress and slip plane, or dot product of axial applied stress and shear stress ...

  4. Slip bands in metals - Wikipedia

    en.wikipedia.org/wiki/Slip_bands_in_metals

    Dislocations are generated on a single slip plane They point out that a dislocation segment (Frank–Read source), lying in a slip plane and pinned at both ends, is a source of an unlimited number of dislocation loops. In this way the grouping of dislocations into an avalanche of a thousand or so loops on a single slip plane can be understood. [19]

  5. Frank–Read source - Wikipedia

    en.wikipedia.org/wiki/Frank–Read_source

    Consider a straight dislocation in a crystal slip plane with its two ends, A and B, pinned. If a shear stress τ {\displaystyle \tau } is exerted on the slip plane then a force F = τ ⋅ b x {\displaystyle F=\tau \cdot bx} , where b is the Burgers vector of the dislocation and x is the distance between the pinning sites A and B, is exerted on ...

  6. Partial dislocation - Wikipedia

    en.wikipedia.org/wiki/Partial_dislocation

    Partial dislocations move freely, but in order to cross slip onto a different plane, they must first constrict to before slipping on a different plane. In order to cross slip, both partial dislocations need to change slip planes. The common Friedel-Escaig mechanism requires that the partial dislocations recombine at a point before cross ...

  7. Lomer–Cottrell junction - Wikipedia

    en.wikipedia.org/wiki/Lomer–Cottrell_junction

    When two perfect dislocations encounter along a slip plane, each perfect dislocation can split into two Shockley partial dislocations: a leading dislocation and a trailing dislocation. When the two leading Shockley partials combine, they form a separate dislocation with a burgers vector that is not in the slip plane. This is the Lomer ...

  8. Air traffic controller's slip of the tongue nearly caused ...

    www.aol.com/air-traffic-controllers-slip-tongue...

    For premium support please call: 800-290-4726 more ways to reach us

  9. Slope stability - Wikipedia

    en.wikipedia.org/wiki/Slope_stability

    A primary difficulty with analysis is locating the most-probable slip plane for any given situation. [2] Many landslides have only been analyzed after the fact. More recently slope stability radar technology has been employed, particularly in the mining industry, to gather real-time data and assist in determining the likelihood of slope failure.