Search results
Results from the WOW.Com Content Network
In mathematics, there is in mathematical analysis a class of Sobolev inequalities, relating norms including those of Sobolev spaces.These are used to prove the Sobolev embedding theorem, giving inclusions between certain Sobolev spaces, and the Rellich–Kondrachov theorem showing that under slightly stronger conditions some Sobolev spaces are compactly embedded in others.
In mathematics, and in particular in mathematical analysis, the Gagliardo–Nirenberg interpolation inequality is a result in the theory of Sobolev spaces that relates the -norms of different weak derivatives of a function through an interpolation inequality.
In mathematics, a Sobolev mapping is a mapping between manifolds which has smoothness in some sense. Sobolev mappings appear naturally in manifold-constrained problems in the calculus of variations and partial differential equations , including the theory of harmonic maps .
In mathematics, the Poincaré inequality [1] is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition.
The theory of interpolation of vector spaces began by an observation of Józef Marcinkiewicz, later generalized and now known as the Riesz-Thorin theorem.In simple terms, if a linear function is continuous on a certain space L p and also on a certain space L q, then it is also continuous on the space L r, for any intermediate r between p and q.
In mathematical analysis, Trudinger's theorem or the Trudinger inequality (also sometimes called the Moser–Trudinger inequality) is a result of functional analysis on Sobolev spaces. It is named after Neil Trudinger (and Jürgen Moser). It provides an inequality between a certain Sobolev space norm and an Orlicz space norm of a
A simple example of an interpolation inequality — one in which all the u k are the same u, but the norms ‖·‖ k are different — is Ladyzhenskaya's inequality for functions :, which states that whenever u is a compactly supported function such that both u and its gradient ∇u are square integrable, it follows that the fourth power of u is integrable and [2]
In mathematics, logarithmic Sobolev inequalities are a class of inequalities involving the norm of a function f, its logarithm, and its gradient . These inequalities were discovered and named by Leonard Gross, who established them in dimension-independent form, [1] [2] in the context of constructive quantum field theory. Similar results were ...