Search results
Results from the WOW.Com Content Network
The Cauchy distribution, named after Augustin-Louis Cauchy, is a continuous probability distribution.It is also known, especially among physicists, as the Lorentz distribution (after Hendrik Lorentz), Cauchy–Lorentz distribution, Lorentz(ian) function, or Breit–Wigner distribution.
Cauchy also contributed to a number of topics in mathematical physics, ... The coefficient B 1 is called by Cauchy the residue of function f at a.
As written in the Cauchy momentum equation, the stress terms p and τ are yet unknown, so this equation alone cannot be used to solve problems. Besides the equations of motion—Newton's second law—a force model is needed relating the stresses to the flow motion. [12]
The Cauchy-Riemann equations are one way of looking at the condition for a function to be differentiable in the sense of complex analysis: in other words, they encapsulate the notion of function of a complex variable by means of conventional differential calculus. In the theory there are several other major ways of looking at this notion, and ...
In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy , who originally defined it in 1830 in his article "The refraction and reflection of light".
In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula.
Cauchy's functional equation is the functional equation: (+) = + (). A function that solves this equation is called an additive function.Over the rational numbers, it can be shown using elementary algebra that there is a single family of solutions, namely : for any rational constant .
In physics, the Dirac delta function was popularized by Paul Dirac in this book The Principles of Quantum Mechanics published in 1930. [3] However, Oliver Heaviside, 35 years before Dirac, described an impulsive function called the Heaviside step function for purposes and with properties analogous to Dirac's work.