Search results
Results from the WOW.Com Content Network
Animated example of a breadth-first search. Black: explored, grey: queued to be explored later on BFS on Maze-solving algorithm Top part of Tic-tac-toe game tree. Breadth-first search (BFS) is an algorithm for searching a tree data structure for a node that satisfies a given property.
If G is a tree, replacing the queue of the breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [7]
Dijkstra's algorithm (/ ˈ d aɪ k s t r ə z / DYKE-strəz) is an algorithm for finding the shortest paths between nodes in a weighted graph, which may represent, for example, a road network. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later.
For infinite trees, simple algorithms often fail this. For example, given a binary tree of infinite depth, a depth-first search will go down one side (by convention the left side) of the tree, never visiting the rest, and indeed an in-order or post-order traversal will never visit any nodes, as it has not reached a leaf (and in fact never will ...
Unlike the latter however, optimisation algorithms do not necessarily require problems to be logic-solvable, giving them the potential to solve a wider range of problems. Algorithms designed for graph colouring are also known to perform well with Sudokus. [13] It is also possible to express a Sudoku as an integer linear programming problem ...
It is a generalization of pathfinding. Many multi-agent pathfinding algorithms are generalized from A*, or based on reduction to other well studied problems such as integer linear programming. [11] However, such algorithms are typically incomplete; in other words, not proven to produce a solution within polynomial time.
Best-first search is a class of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.. Judea Pearl described best-first search as estimating the promise of node n by a "heuristic evaluation function () which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to ...
Algorithms are often evaluated by their computational complexity, or maximum theoretical run time. Binary search functions, for example, have a maximum complexity of O(log n), or logarithmic time. In simple terms, the maximum number of operations needed to find the search target is a logarithmic function of the size of the search space.