Search results
Results from the WOW.Com Content Network
Two primary classes of thermodynamic cycles are power cycles and heat pump cycles. Power cycles are cycles which convert some heat input into a mechanical work output, while heat pump cycles transfer heat from low to high temperatures by using mechanical work as the input. Cycles composed entirely of quasistatic processes can operate as power ...
For dilute thermodynamic conditions, the ideal-gas equation of state (EoS) provides sufficiently accurate results in modelling the fluid thermodynamics. This occurs in general for low values of reduced pressure and high values of reduced temperature, where the term reduced refers to the ratio of a certain thermodynamic quantity and its critical ...
Thermoeconomics, also referred to as biophysical economics, is a school of heterodox economics that applies the laws of statistical mechanics to economic theory. [1] Thermoeconomics can be thought of as the statistical physics of economic value [ 2 ] and is a subfield of econophysics .
When burning natural gas as a fuel, this basic configuration has been modeled to achieve an efficiency up to 60% (LHV) as a power cycle net of all parasitic loads, including the energy-intensive ASU. Despite its novelty, the components required by this cycle are commercially available, with the exception of the combustion turbine package.
The Ericsson cycle (and the similar Brayton cycle) receives renewed interest [6] today to extract power from the exhaust heat of gas (and producer gas) engines and solar concentrators. An important advantage of the Ericsson cycle over the widely known Stirling engine is often not recognized : the volume of the heat exchanger does not adversely ...
The suitable relationship that defines non-equilibrium thermodynamic state variables is as follows. When the system is in local equilibrium, non-equilibrium state variables are such that they can be measured locally with sufficient accuracy by the same techniques as are used to measure thermodynamic state variables, or by corresponding time and space derivatives, including fluxes of matter and ...
[12] [13] [1] Only one percent of solar energy enters the producer, the rest bounces off or moves through. [13] Gross primary productivity is the amount of energy the producer actually gets. [13] [14] Generally, 60% of the energy that enters the producer goes to the producer’s own respiration. [12]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file