enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Algebraic_topology

    Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism , though usually most classify up to homotopy equivalence .

  3. Grothendieck's Galois theory - Wikipedia

    en.wikipedia.org/wiki/Grothendieck's_Galois_theory

    It provides, in the classical setting of field theory, an alternative perspective to that of Emil Artin based on linear algebra, which became standard from about the 1930s. The approach of Alexander Grothendieck is concerned with the category-theoretic properties that characterise the categories of finite G -sets for a fixed profinite group G .

  4. List of algebraic topology topics - Wikipedia

    en.wikipedia.org/wiki/List_of_algebraic_topology...

    Path (topology) Fundamental group; Homotopy group; Seifert–van Kampen theorem; Pointed space; Winding number; Simply connected. Universal cover; Monodromy; Homotopy lifting property; Mapping cylinder; Mapping cone (topology) Wedge sum; Smash product; Adjunction space; Cohomotopy; Cohomotopy group; Brown's representability theorem; Eilenberg ...

  5. Mapping cylinder - Wikipedia

    en.wikipedia.org/wiki/Mapping_cylinder

    In mathematics, specifically algebraic topology, the mapping cylinder [1] of a continuous function between topological spaces and is the quotient = (([,])) / where the denotes the disjoint union, and ~ is the equivalence relation generated by

  6. Fundamental group - Wikipedia

    en.wikipedia.org/wiki/Fundamental_group

    Massey, William S. (1991), A Basic Course in Algebraic Topology, Springer, ISBN 038797430X; May, J. Peter (1999), A Concise Course in Algebraic Topology, ISBN 9780226511832; Deane Montgomery and Leo Zippin, Topological Transformation Groups, Interscience Publishers (1955) Munkres, James R. (2000), Topology, Prentice Hall, ISBN 0-13-181629-2

  7. Marvin Greenberg - Wikipedia

    en.wikipedia.org/wiki/Marvin_Greenberg

    He was known for his book on non-Euclidean geometry (1st edition, 1974; 4th edition, 2008) [3] [4] and his book on algebraic topology (1st edition, 1967, published with the title Lectures on Algebraic Topology; revised edition published, with John R. Harper as co-author, in 1981 with the title Algebraic Topology: A First Course). [5] [6] [7]

  8. Eilenberg–MacLane space - Wikipedia

    en.wikipedia.org/wiki/Eilenberg–MacLane_space

    In mathematics, specifically algebraic topology, an Eilenberg–MacLane space [note 1] is a topological space with a single nontrivial homotopy group. Let G be a group and n a positive integer . A connected topological space X is called an Eilenberg–MacLane space of type K ( G , n ) {\displaystyle K(G,n)} , if it has n -th homotopy group π n ...

  9. Topological data analysis - Wikipedia

    en.wikipedia.org/wiki/Topological_data_analysis

    Category theory is the language of modern algebra, and has been widely used in the study of algebraic geometry and topology. It has been noted that "the key observation of [ 10 ] is that the persistence diagram produced by [ 8 ] depends only on the algebraic structure carried by this diagram."