Search results
Results from the WOW.Com Content Network
Within an imperative programming language, a control flow statement is a statement that results in a choice being made as to which of two or more paths to follow. For non-strict functional languages, functions and language constructs exist to achieve the same result, but they are usually not termed control flow statements.
The loop-switch sequence is a specific derivative of spaghetti code. It is not necessarily an antipattern to use a switch statement within a loop—it is only considered incorrect when used to model a known sequence of steps. The most common example of the correct use of a switch within a loop is an inversion of control such as
The loop counter is used to decide when the loop should terminate and for the program flow to continue to the next instruction after the loop. A common identifier naming convention is for the loop counter to use the variable names i , j , and k (and so on if needed), where i would be the most outer loop, j the next inner loop, etc.
In computer programming, loop-invariant code consists of statements or expressions (in an imperative programming language) that can be moved outside the body of a loop without affecting the semantics of the program. Loop-invariant code motion (also called hoisting or scalar promotion) is a compiler optimization that performs this movement ...
A language that supports the statement construct typically has rules for one or more of the following aspects: Statement terminator – marks the end of a statement; Statement separator – demarcates the boundary between two statements; need needed for the last statement; Line continuation – escapes a newline to continue a statement on the ...
The repeat statement repetitively executes a block of one or more statements through an until statement and continues repeating unless the condition is false. The main difference between the two is the while loop may execute zero times if the condition is initially false, the repeat-until loop always executes at least once.
Because the entire inner loop is performed for each iteration of the outer loop, optimizations of the inner loop will have much greater effect than optimizations of the outer loop. In many languages there are at least two types of loops – for loops and while loops – and they can be nested within each other. [1]
Loop unrolling, also known as loop unwinding, is a loop transformation technique that attempts to optimize a program's execution speed at the expense of its binary size, which is an approach known as space–time tradeoff. The transformation can be undertaken manually by the programmer or by an optimizing compiler.