Search results
Results from the WOW.Com Content Network
The Gurney equations give a result that assumes the shell or sheet of material remains intact throughout a large portion of the explosive-gas expansion such that work can performed upon it. For some configurations and materials this is true; explosive welding, for example, uses a thin sheet of explosive to evenly accelerate flat plates of metal ...
The metals involved in a bimetallic strip can vary in composition so long as their thermal expansion coefficients differ. The metal of lower thermal expansion coefficient is sometimes called the passive metal, while the other is called the active metal. Copper, steel, brass, iron, and nickel are commonly used metals in bimetallic strips. [6]
A number of materials contract on heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal contraction".For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C (39.169 °F) and then becomes negative below this temperature; this means that water has a maximum density at this temperature, and ...
We assume the expansion occurs without exchange of heat (adiabatic expansion). Doing this work , air inside the cylinder will cool to below the target temperature. To return to the target temperature (still with a free piston), the air must be heated, but is no longer under constant volume, since the piston is free to move as the gas is reheated.
In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
The Rüchardt experiment, [1] [2] [3] invented by Eduard Rüchardt, is a famous experiment in thermodynamics, which determines the ratio of the molar heat capacities of a gas, i.e. the ratio of (heat capacity at constant pressure) and (heat capacity at constant volume) and is denoted by (gamma, for ideal gas) or (kappa, isentropic exponent, for real gas).
The Mollier enthalpy–entropy diagram for water and steam. The "dryness fraction", x , gives the fraction by mass of gaseous water in the wet region, the remainder being droplets of liquid. An enthalpy–entropy chart , also known as the H – S chart or Mollier diagram , plots the total heat against entropy, [ 1 ] describing the enthalpy of a ...
The bar breaker experiment comprises a very rigid frame (d) and a massive connecting rod (b). The rod is held on one side by a cast iron bar (c) that is going to be broken in the experiment and, at the other end, by a nut (a) that is used to compensate the thermal expansion.