Search results
Results from the WOW.Com Content Network
A predicate is a statement or mathematical assertion that contains variables, sometimes referred to as predicate variables, and may be true or false depending on those variables’ value or values. In propositional logic, atomic formulas are sometimes regarded as zero-place predicates. [1] In a sense, these are nullary (i.e. 0-arity) predicates.
A Boolean-valued function (sometimes called a predicate or a proposition) is a function of the type f : X → B, where X is an arbitrary set and where B is a Boolean domain, i.e. a generic two-element set, (for example B = {0, 1}), whose elements are interpreted as logical values, for example, 0 = false and 1 = true, i.e., a single bit of information.
If "predicate variables" are only allowed to be bound to predicate letters of zero arity (which have no arguments), where such letters represent propositions, then such variables are propositional variables, and any predicate logic which allows second-order quantifiers to be used to bind such propositional variables is a second-order predicate ...
In propositional calculus, a propositional function or a predicate is a sentence expressed in a way that would assume the value of true or false, except that within the sentence there is a variable (x) that is not defined or specified (thus being a free variable), which leaves the statement undetermined.
An interpretation is an assignment of meaning to the symbols of a formal language.Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation.
The basic idea is that each instruction is associated with a predicate (the word here used similarly to its usage in predicate logic) and that the instruction will only be executed if the predicate is true. The machine code for the above example using predication might look something like this: [1]
This signature specifies the constant symbols, predicate symbols, and function symbols of the theory at hand, along with the arities of the function and predicate symbols. The definition of a formula comes in several parts. First, the set of terms is defined recursively.
In predicate logic, universal instantiation [1] [2] [3] (UI; also called universal specification or universal elimination, [citation needed] and sometimes confused with dictum de omni) [citation needed] is a valid rule of inference from a truth about each member of a class of individuals to the truth about a particular individual of that class.