enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    Sound waves can diffract around objects, which is why one can still hear someone calling even when hiding behind a tree. [26] Diffraction can also be a concern in some technical applications; it sets a fundamental limit to the resolution of a camera, telescope, or microscope. Other examples of diffraction are considered below.

  3. Airy disk - Wikipedia

    en.wikipedia.org/wiki/Airy_disk

    Due to diffraction, the smallest point to which a lens or mirror can focus a beam of light is the size of the Airy disk. Even if one were able to make a perfect lens, there is still a limit to the resolution of an image created by such a lens.

  4. Acoustic shadow - Wikipedia

    en.wikipedia.org/wiki/Acoustic_shadow

    A short-distance acoustic shadow occurs behind a building or a sound barrier. The sound from a source is shielded by the obstruction. Due to diffraction around the object, it will not be completely silent in the sound shadow. The amplitude of the sound can be reduced considerably, however, depending on the additional distance the sound has to ...

  5. Diffraction-limited system - Wikipedia

    en.wikipedia.org/wiki/Diffraction-limited_system

    The observation of sub-wavelength structures with microscopes is difficult because of the Abbe diffraction limit.Ernst Abbe found in 1873, [2] and expressed as a formula in 1882, [3] that light with wavelength , traveling in a medium with refractive index and converging to a spot with half-angle will have a minimum resolvable distance of

  6. Optical transfer function - Wikipedia

    en.wikipedia.org/wiki/Optical_transfer_function

    Correspondingly, for this particular imaging device, the spokes become more and more blurred towards the center until they merge into a gray, unresolved, disc. Note that sometimes the optical transfer function is given in units of the object or sample space, observation angle, film width, or normalized to the theoretical maximum.

  7. Glossary of physics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_physics

    mass flux The rate of mass flow per unit area. The common symbols are j, J, φ, or Φ, sometimes with subscript m to indicate mass is the flowing quantity. Its SI units are kg s−1 m−2. mass moment of inertia A property of a distribution of mass in space that measures its resistance to rotational acceleration about an axis. mass number

  8. Diffraction from slits - Wikipedia

    en.wikipedia.org/wiki/Diffraction_from_slits

    Because diffraction is the result of addition of all waves (of given wavelength) along all unobstructed paths, the usual procedure is to consider the contribution of an infinitesimally small neighborhood around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).

  9. Fraunhofer diffraction - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction

    In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when plane waves are incident on a diffracting object, and the diffraction pattern is viewed at a sufficiently long distance (a distance satisfying Fraunhofer condition) from the object (in the far-field region), and also when it is viewed at the focal plane of an imaging lens.