Search results
Results from the WOW.Com Content Network
The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy , it usually applies to planets or asteroids orbiting the Sun , moons orbiting planets, exoplanets orbiting other stars , or binary stars .
The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit. The elliptical orbits of planets were indicated by calculations of the orbit of Mars. From this, Kepler inferred that other bodies in the Solar System, including those farther away from the Sun, also have elliptical orbits. The ...
This is because the distance between Earth and the Sun is not fixed (it varies between 0.983 289 8912 and 1.016 710 3335 au) and, when Earth is closer to the Sun , the Sun's gravitational field is stronger and Earth is moving faster along its orbital path. As the metre is defined in terms of the second and the speed of light is constant for all ...
The table lists the values for all planets and dwarf planets, and selected asteroids, comets, and moons. Mercury has the greatest orbital eccentricity of any planet in the Solar System (e = 0.2056), followed by Mars of 0.093 4. Such eccentricity is sufficient for Mercury to receive twice as much solar irradiation at perihelion compared to aphelion.
Mercury, the closest planet to the Sun at 0.4 astronomical units (AU), takes 88 days for an orbit, but the smallest known orbits of exoplanets have orbital periods of only a few hours, see Ultra-short period planet. The Kepler-11 system has five of its planets in smaller orbits than Mercury's.
Radial velocity curve with peak radial velocity K=1 m/s and orbital period 2 years. The peak radial velocity is the semi-amplitude of the radial velocity curve, as shown in the figure. The orbital period is found from the periodicity in the radial velocity curve. These are the two observable quantities needed to calculate the binary mass function.
This template is part of a group of templates that are used to display information about the orbital characteristics of an extrasolar planetary system. The list should always have {{OrbitboxPlanet begin}} as the first in the list, while the list should have {{Orbitbox end}} as the last in the list.
Note that the semi-major axis is proportional to the 2/3 power of the orbital period. For example, planets in a 2:3 orbital resonance (such as plutinos relative to Neptune) will vary in distance by (2/3) 2/3 = −23.69% and +31.04% relative to one another. 2 Ceres and Pluto are dwarf planets rather than major planets.