Search results
Results from the WOW.Com Content Network
That is, it finds a shortest path, second shortest path, etc. up to the K th shortest path. More details can be found here. The code provided in this example attempts to solve the k shortest path routing problem for a 15-nodes network containing a combination of unidirectional and bidirectional links:
The binary Golay code, G 23 is a perfect code. That is, the spheres of radius three around code words form a partition of the vector space. G 23 is a 12-dimensional subspace of the space F 23 2. The automorphism group of the perfect binary Golay code G 23 (meaning the subgroup of the group S 23 of permutations of the coordinates of F 23
Problem 2. Find the path of minimum total length between two given nodes P and Q. We use the fact that, if R is a node on the minimal path from P to Q, knowledge of the latter implies the knowledge of the minimal path from P to R. is a paraphrasing of Bellman's Principle of Optimality in the context of the shortest path problem.
One example is the constrained shortest path problem, [16] which attempts to minimize the total cost of the path while at the same time maintaining another metric below a given threshold. This makes the problem NP-complete (such problems are not believed to be efficiently solvable for large sets of data, see P = NP problem ).
Branch and bound (BB, B&B, or BnB) is a method for solving optimization problems by breaking them down into smaller sub-problems and using a bounding function to eliminate sub-problems that cannot contain the optimal solution. It is an algorithm design paradigm for discrete and combinatorial optimization problems, as well as mathematical ...
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
The undirected route inspection problem can be solved in polynomial time by an algorithm based on the concept of a T-join.Let T be a set of vertices in a graph. An edge set J is called a T-join if the collection of vertices that have an odd number of incident edges in J is exactly the set T.
Most problems for which they work will have two properties: Greedy choice property Whichever choice seems best at a given moment can be made and then (recursively) solve the remaining sub-problems. The choice made by a greedy algorithm may depend on choices made so far, but not on future choices or all the solutions to the subproblem.