Search results
Results from the WOW.Com Content Network
Kasner used it to illustrate the difference between an unimaginably large number and infinity, and in this role it is sometimes used in teaching mathematics. To put in perspective the size of a googol, the mass of an electron, just under 10 −30 kg, can be compared to the mass of the visible universe, estimated at between 10 50 and 10 60 kg. [ 5 ]
A typical book can be printed with 10 6 zeros (around 400 pages with 50 lines per page and 50 zeros per line). Therefore, it requires 10 94 such books to print all the zeros of a googolplex (that is, printing a googol zeros). [4] If each book had a mass of 100 grams, all of them would have a total mass of 10 93 kilograms.
The naming procedure for large numbers is based on taking the number n occurring in 10 3n+3 (short scale) or 10 6n (long scale) and concatenating Latin roots for its units, tens, and hundreds place, together with the suffix -illion. In this way, numbers up to 10 3·999+3 = 10 3000 (short scale) or 10 6·999 = 10 5994 (long scale
1×10 −1: multiplication of two 10-digit numbers by a 1940s electromechanical desk calculator [1] 3×10 −1: multiplication on Zuse Z3 and Z4, first programmable digital computers, 1941 and 1945 respectively; 5×10 −1: computing power of the average human mental calculation [clarification needed] for multiplication using pen and paper
The table shows what number the order of magnitude aim at for base 10 and for base 1 000 000. It can be seen that the order of magnitude is included in the number name in this example, because bi- means 2, tri- means 3, etc. (these make sense in the long scale only), and the suffix -illion tells that the base is 1 000 000 .
Factor ()Multiple Value Item 10 −18: 1 attohertz (aHz) ~2.2978 aHz: The Hubble constant (once in 13.8 billion years) : 10 −17: 10 aHz ~79 aHz: Supercontinent cycle (about every 400 million years)
In fact, his monthly PayPal statement showed a negative balance of more than $92 quadrillion, which would have made him more than 5,500 times more indebted than the United States government.
1/52! chance of a specific shuffle Mathematics: The chances of shuffling a standard 52-card deck in any specific order is around 1.24 × 10 −68 (or exactly 1 ⁄ 52!) [4] Computing: The number 1.4 × 10 −45 is approximately equal to the smallest positive non-zero value that can be represented by a single-precision IEEE floating-point value.