enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...

  3. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    [18] [19] Support vector machine weights have also been used to interpret SVM models in the past. [20] Posthoc interpretation of support vector machine models in order to identify features used by the model to make predictions is a relatively new area of research with special significance in the biological sciences.

  4. Structured support vector machine - Wikipedia

    en.wikipedia.org/wiki/Structured_support_vector...

    Whereas the SVM classifier supports binary classification, multiclass classification and regression, the structured SVM allows training of a classifier for general structured output labels. As an example, a sample instance might be a natural language sentence, and the output label is an annotated parse tree. Training a classifier consists of ...

  5. List of spreadsheet software - Wikipedia

    en.wikipedia.org/wiki/List_of_spreadsheet_software

    Kingsoft Office Spreadsheets 2012 – For MS Windows. Both free and paid versions are available. It can handle Microsoft Excel .xls and .xlsx files, and also produce other file formats such as .et, .txt, .csv, .pdf, and .dbf. It supports multiple tabs, VBA macro and PDF converting. [10] Lotus SmartSuite Lotus 123 – for MS Windows. In its MS ...

  6. Radial basis function kernel - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_kernel

    In machine learning, the radial basis function kernel, or RBF kernel, is a popular kernel function used in various kernelized learning algorithms. In particular, it is commonly used in support vector machine classification. [1]

  7. List of statistical software - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_software

    The Unscrambler – free-to-try commercial multivariate analysis software for Windows; Unistat – general statistics package that can also work as Excel add-in; WarpPLS – statistics package used in structural equation modeling; Wolfram Language [6] – the computer language that evolved from the program Mathematica. It has similar ...

  8. Microsoft Office XML formats - Wikipedia

    en.wikipedia.org/wiki/Microsoft_Office_XML_formats

    Besides differences in the schema, there are several other differences between the earlier Office XML schema formats and Office Open XML. Whereas the data in Office Open XML documents is stored in multiple parts and compressed in a ZIP file conforming to the Open Packaging Conventions, Microsoft Office XML formats are stored as plain single monolithic XML files (making them quite large ...

  9. Polynomial kernel - Wikipedia

    en.wikipedia.org/wiki/Polynomial_kernel

    The hyperplane learned in feature space by an SVM is an ellipse in the input space. In machine learning , the polynomial kernel is a kernel function commonly used with support vector machines (SVMs) and other kernelized models, that represents the similarity of vectors (training samples) in a feature space over polynomials of the original ...