enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Alpha helix - Wikipedia

    en.wikipedia.org/wiki/Alpha_helix

    The pitch of the alpha-helix (the vertical distance between consecutive turns of the helix) is 5.4 Å (0.54 nm), which is the product of 1.5 and 3.6. The most important thing is that the N-H group of one amino acid forms a hydrogen bond with the C=O group of the amino acid four residues earlier; this repeated i + 4 → i hydrogen bonding is the ...

  3. Protein secondary structure - Wikipedia

    en.wikipedia.org/wiki/Protein_secondary_structure

    The image above contains clickable links This diagram (which is interactive) of protein structure uses PCNA as an example. ( PDB : 1AXC ) Protein secondary structure is the local spatial conformation of the polypeptide backbone excluding the side chains. [ 1 ]

  4. Helical wheel - Wikipedia

    en.wikipedia.org/wiki/Helical_wheel

    An example of an amino acid sequence plotted on a helical wheel. Aliphatic residues are shown as blue squares, polar or negatively charged residues as red diamonds, and positively charged residues as black octagons. A helical wheel is a type of plot or visual representation used to illustrate the properties of alpha helices in proteins.

  5. Helix bundle - Wikipedia

    en.wikipedia.org/wiki/Helix_bundle

    Three-helix bundles are among the smallest and fastest known cooperatively folding structural domains. [1] The three-helix bundle in the villin headpiece domain is only 36 amino acids long and is a common subject of study in molecular dynamics simulations because its microsecond-scale folding time is within the timescales accessible to simulation.

  6. Supersecondary structure - Wikipedia

    en.wikipedia.org/wiki/Supersecondary_structure

    Two Rossmann folds in Cryptosporidium parvum lactate dehydrogenase, with NAD+ bound. A beta-alpha-beta motif is composed of two beta strands joined by an alpha helix through connecting loops. The beta strands are parallel, and the helix is also almost parallel to the strands. This structure can be seen in almost all proteins with parallel strands.

  7. 310 helix - Wikipedia

    en.wikipedia.org/wiki/310_helix

    The amino acids in a 3 10-helix are arranged in a right-handed helical structure. Each amino acid corresponds to a 120° turn in the helix (i.e., the helix has three residues per turn), and a translation of 2.0 Å (0.20 nm) along the helical axis, and has 10 atoms in the ring formed by making the hydrogen bond.

  8. Protein fold class - Wikipedia

    en.wikipedia.org/wiki/Protein_fold_class

    In molecular biology, protein fold classes are broad categories of protein tertiary structure topology. They describe groups of proteins that share similar amino acid and secondary structure proportions. Each class contains multiple, independent protein superfamilies (i.e. are not necessarily evolutionarily related to one another). [1] [2] [3]

  9. Rossmann fold - Wikipedia

    en.wikipedia.org/wiki/Rossmann_fold

    The Rossmann fold is a tertiary fold found in proteins that bind nucleotides, such as enzyme cofactors FAD, NAD +, and NADP +.This fold is composed of alternating beta strands and alpha helical segments where the beta strands are hydrogen bonded to each other forming an extended beta sheet and the alpha helices surround both faces of the sheet to produce a three-layered sandwich.