enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    The true significand of normal numbers includes 23 fraction bits to the right of the binary point and an implicit leading bit (to the left of the binary point) with value 1. Subnormal numbers and zeros (which are the floating-point numbers smaller in magnitude than the least positive normal number) are represented with the biased exponent value ...

  3. Significand - Wikipedia

    en.wikipedia.org/wiki/Significand

    The significand [1] (also coefficient, [1] sometimes argument, [2] or more ambiguously mantissa, [3] fraction, [4] [5] [nb 1] or characteristic [6] [3]) is the first (left) part of a number in scientific notation or related concepts in floating-point representation, consisting of its significant digits. For negative numbers, it does not include ...

  4. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    The positive and negative normalized numbers closest to zero (represented with the binary value 1 in the Exp field and 0 in the fraction field) are ±1 × 2 −1022 ≈ ±2.22507 × 10 −308; The finite positive and finite negative numbers furthest from zero (represented by the value with 2046 in the Exp field and all 1s in the fraction field) are

  5. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    where p is the precision (24 in this example), n is the position of the bit of the significand from the left (starting at 0 and finishing at 23 here) and e is the exponent (1 in this example). It can be required that the most significant digit of the significand of a non-zero number be non-zero (except when the corresponding exponent would be ...

  6. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    A minifloat in 1 byte (8 bit) with 1 sign bit, 4 exponent bits and 3 significand bits (in short, a 1.4.3 minifloat) is demonstrated here. The exponent bias is defined as 7 to center the values around 1 to match other IEEE 754 floats [ 3 ] [ 4 ] so (for most values) the actual multiplier for exponent x is 2 x −7 .

  7. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    For example, a significand of 8 000 000 is encoded as binary 0111 1010000100 1000000000, with the leading 4 bits encoding 7; the first significand which requires a 24th bit (and thus the second encoding form) is 2 23 = 8 388 608.

  8. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    Sign–magnitude is the most common way of representing the significand in floating-point values. Ones' complement ... 1000 0000 −0 1000 1111 −1 — 1001 1110 ...

  9. Subnormal number - Wikipedia

    en.wikipedia.org/wiki/Subnormal_number

    In a normal floating-point value, there are no leading zeros in the significand (also commonly called mantissa); rather, leading zeros are removed by adjusting the exponent (for example, the number 0.0123 would be written as 1.23 × 10 −2). Conversely, a denormalized floating-point value has a significand with a leading digit of zero.