Search results
Results from the WOW.Com Content Network
The Kumaraswamy distribution is as versatile as the Beta distribution but has simple closed forms for both the cdf and the pdf. The logit metalog distribution, which is highly shape-flexible, has simple closed forms, and can be parameterized with data using linear least squares.
Considerations of the shape of a distribution arise in statistical data analysis, where simple quantitative descriptive statistics and plotting techniques such as histograms can lead on to the selection of a particular family of distributions for modelling purposes. The normal distribution, often called the "bell curve" Exponential distribution
The gamma distribution (;) (>) can be expressed as the product distribution of a Weibull distribution and a variant form of the stable count distribution. Its shape parameter can be regarded as the inverse of Lévy's stability parameter in the stable count distribution: (;) = [()], where () is a standard stable count distribution of shape , and ...
A histogram is a visual representation of the distribution of quantitative data. To construct a histogram, the first step is to "bin" (or "bucket") the range of values— divide the entire range of values into a series of intervals—and then count how many values fall into each interval.
In probability theory and statistics, the Weibull distribution / ˈ w aɪ b ʊ l / is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed.Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution.
As the logistic distribution, which can be solved analytically, is similar to the normal distribution, it can be used instead. The blue picture illustrates an example of fitting the logistic distribution to ranked October rainfalls—that are almost normally distributed—and it shows the 90% confidence belt based on the binomial distribution.