enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. White test - Wikipedia

    en.wikipedia.org/wiki/White_test

    Conversely, a “large" R 2 (scaled by the sample size so that it follows the chi-squared distribution) counts against the hypothesis of homoskedasticity. An alternative to the White test is the Breusch–Pagan test, where the Breusch-Pagan test is designed to detect only linear forms of heteroskedasticity. Under certain conditions and a ...

  3. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    An alternative to explicitly modelling the heteroskedasticity is using a resampling method such as the wild bootstrap. Given that the studentized bootstrap, which standardizes the resampled statistic by its standard error, yields an asymptotic refinement, [13] heteroskedasticity-robust standard errors remain nevertheless useful.

  4. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    Plot with random data showing heteroscedasticity: The variance of the y-values of the dots increases with increasing values of x. In statistics, a sequence of random variables is homoscedastic (/ ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k /) if all its random variables have the same finite variance; this is also known as homogeneity of variance.

  5. Newey–West estimator - Wikipedia

    en.wikipedia.org/wiki/Newey–West_estimator

    In Julia, the CovarianceMatrices.jl package [11] supports several types of heteroskedasticity and autocorrelation consistent covariance matrix estimation including Newey–West, White, and Arellano. In R , the packages sandwich [ 6 ] and plm [ 12 ] include a function for the Newey–West estimator.

  6. Glejser test - Wikipedia

    en.wikipedia.org/wiki/Glejser_test

    Glejser test for heteroscedasticity, developed in 1969 by Herbert Glejser, is a statistical test, which regresses the residuals on the explanatory variable that is thought to be related to the heteroscedastic variance. [1]

  7. Homogeneity and heterogeneity (statistics) - Wikipedia

    en.wikipedia.org/wiki/Homogeneity_and...

    Plot with random data showing heteroscedasticity: The variance of the y-values of the dots increases with increasing values of x. In statistics, a sequence of random variables is homoscedastic (/ ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k /) if all its random variables have the same finite variance; this is also known as homogeneity of variance ...

  8. Heckman correction - Wikipedia

    en.wikipedia.org/wiki/Heckman_correction

    He suggests a two-stage estimation method to correct the bias. The correction uses a control function idea and is easy to implement. Heckman's correction involves a normality assumption, provides a test for sample selection bias and formula for bias corrected model.

  9. Autoregressive conditional heteroskedasticity - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_conditional...

    Generally, when testing for heteroskedasticity in econometric models, the best test is the White test. However, when dealing with time series data, this means to test for ARCH and GARCH errors. Exponentially weighted moving average (EWMA) is an alternative model in a separate class of exponential smoothing models. As an alternative to GARCH ...