enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Local standard of rest - Wikipedia

    en.wikipedia.org/wiki/Local_standard_of_rest

    The Sun follows the solar circle (eccentricity e < 0.1) at a speed of about 255 km/s in a clockwise direction when viewed from the galactic north pole at a radius of ≈ 8.34 kpc [4] about the center of the galaxy near Sgr A*, and has only a slight motion, towards the solar apex, relative to the LSR. [5] [6]

  3. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞. Time dilation (different times t and t' at the same position x in same inertial frame) ′ =

  4. Stellar kinematics - Wikipedia

    en.wikipedia.org/wiki/Stellar_kinematics

    Typical examples are the halo stars passing through the disk of the Milky Way at steep angles. One of the nearest 45 stars, called Kapteyn's Star, is an example of the high-velocity stars that lie near the Sun: Its observed radial velocity is −245 km/s, and the components of its space velocity are u = +19 km/s, v = −288 km/s, and w = −52 ...

  5. Peculiar velocity - Wikipedia

    en.wikipedia.org/wiki/Peculiar_velocity

    Velocities for local objects are sometimes reported with respect to the local standard of rest (LSR)—the average local motion of material in the galaxy—instead of the Sun's rest frame. Translating between the LSR and heliocentric rest frames requires the calculation of the Sun's peculiar velocity in the LSR. [1]

  6. Faster-than-light - Wikipedia

    en.wikipedia.org/wiki/Faster-than-light

    Moreover, in general relativity, velocity is a local notion, and there is not even a unique definition for the relative velocity of a cosmologically distant object. [17] Faster-than-light cosmological recession speeds are entirely a coordinate effect. There are many galaxies visible in telescopes with redshift numbers of 1.4 or higher. All of ...

  7. Hubble's law - Wikipedia

    en.wikipedia.org/wiki/Hubble's_law

    A galaxy's recessional velocity is typically determined by measuring its redshift, a shift in the frequency of light emitted by the galaxy. The discovery of Hubble's law is attributed to work published by Edwin Hubble in 1929, [ 2 ] [ 3 ] [ 4 ] but the notion of the universe expanding at a calculable rate was first derived from general ...

  8. Recessional velocity - Wikipedia

    en.wikipedia.org/wiki/Recessional_velocity

    where is the Hubble constant, is the proper distance, is the object's recessional velocity, and is the object's peculiar velocity. The recessional velocity of a galaxy can be calculated from the redshift observed in its emitted spectrum. One application of Hubble's law is to estimate distances to galaxies based on measurements of their ...

  9. Speed - Wikipedia

    en.wikipedia.org/wiki/Speed

    Average orbital speed of planet Earth around the Sun: 29 783: 97 713: 107 218: 66 623: The fastest recorded speed of the Helios probes: 70,220: 230,381: 252,792: 157,078: Recognized as the fastest speed achieved by a man-made spacecraft, achieved in solar orbit. Orbital speed of the Sun relative to the center of the galaxy: 251 000: 823 000: ...

  1. Related searches speed of sun relative to galaxy in meters x 40 times higher velocity

    speed of sun relative to galaxy in meters x 40 times higher velocity than 1