Search results
Results from the WOW.Com Content Network
This version of Phenomena is often referred to as the "integral cut". [24] A shorter version of the film was prepared for international release that had a 110-minute running time. [24] This version of the film only cuts out minor material from the "integral cut" with most being a few frames at the end and beginning of shots. [24]
One-loop diagrams are usually computed as the integral over one independent momentum that can "run in the cycle". The Casimir effect , Hawking radiation and Lamb shift are examples of phenomena whose existence can be implied using one-loop Feynman diagrams, especially the well-known "triangle diagram":
Fikhtengol'ts's books on analysis are widely used in Middle and Eastern European, as well as Chinese universities, due to their exceptionally detailed and well-organized presentation of material on mathematical analysis. For unknown reasons, these books have not gained the same level of fame in universities in other parts of the world.
QED was designed to be a popular science book, written in a witty style, and containing just enough quantum-mechanical mathematics to allow the solving of very basic problems in quantum electrodynamics by an educated lay audience. It is unusual for a popular science book in the level of mathematical detail it goes into, actually allowing the ...
Each theory of quantum gravity uses the term "quantum geometry" in a slightly different fashion. String theory, a leading candidate for a quantum theory of gravity, uses it to describe exotic phenomena such as T-duality and other geometric dualities, mirror symmetry, topology-changing transitions [clarification needed], minimal possible distance scale, and other effects that challenge intuition.
Schwinger parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops. Using the well-known observation that 1 A n = 1 ( n − 1 ) ! ∫ 0 ∞ d u u n − 1 e − u A , {\displaystyle {\frac {1}{A^{n}}}={\frac {1}{(n-1)!}}\int _{0}^{\infty }du\,u^{n-1}e^{-uA},}
Abraham, R.; Marsden, J. E. (2008). Foundations of Mechanics: A Mathematical Exposition of Classical Mechanics with an Introduction to the Qualitative Theory of Dynamical Systems (2nd ed.).
In theoretical physics, dimensional regularization is a method introduced by Giambiagi and Bollini [1] as well as – independently and more comprehensively [2] – by 't Hooft and Veltman [3] for regularizing integrals in the evaluation of Feynman diagrams; in other words, assigning values to them that are meromorphic functions of a complex parameter d, the analytic continuation of the number ...