Search results
Results from the WOW.Com Content Network
John Forbes Nash Jr. (June 13, 1928 – May 23, 2015), known and published as John Nash, was an American mathematician who made fundamental contributions to game theory, real algebraic geometry, differential geometry, and partial differential equations.
Separately, game theory has played a role in online algorithms; in particular, the k-server problem, which has in the past been referred to as games with moving costs and request-answer games. [125] Yao's principle is a game-theoretic technique for proving lower bounds on the computational complexity of randomized algorithms , especially online ...
Constant sum: A game is a constant sum game if the sum of the payoffs to every player are the same for every single set of strategies. In these games, one player gains if and only if another player loses. A constant sum game can be converted into a zero sum game by subtracting a fixed value from all payoffs, leaving their relative order unchanged.
For instance, with 100 gold pieces and 500 pirates, pirates #500 through #457 die, and then #456 survives (as 456 = 200 + 2 8) as they have the 128 guaranteed self-preservation votes of pirates #329 through #456, plus 100 votes from the pirates they bribe, making up the 228 votes that they need. The numbers of pirates past #200 who can ...
Admissibility and Perfection: Each equilibrium in a stable set is perfect, and therefore admissible. Backward Induction and Forward Induction: A stable set includes a proper equilibrium of the normal form of the game that induces a quasi-perfect and therefore a sequential equilibrium in every extensive-form game with perfect recall that has the same normal form.
The ingredients of a stochastic game are: a finite set of players ; a state space (either a finite set or a measurable space (,)); for each player , an action set (either a finite set or a measurable space (,)); a transition probability from , where = is the action profiles, to , where (,) is the probability that the next state is in given the current state and the current action profile ; and ...
Conditions on G (the stage game) – whether there are any technical conditions that should hold in the one-shot game in order for the theorem to work. Conditions on x (the target payoff vector of the repeated game) – whether the theorem works for any individually rational and feasible payoff vector, or only on a subset of these vectors.
Aumann was the first to define the concept of correlated equilibrium in game theory, which is a type of equilibrium in non-cooperative games that is more flexible than the classical Nash equilibrium. Furthermore, Aumann has introduced the first purely formal account of the notion of common knowledge in game theory.