Search results
Results from the WOW.Com Content Network
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...
Ci – cosine integral function. cis – cos + i sin function. (Also written as expi.) Cl – conjugacy class. cl – topological closure. CLT – central limit theorem. cod, codom – codomain. cok, coker – cokernel. colsp – column space of a matrix. conv – convex hull of a set. Cor – corollary. corr – correlation. cos – cosine ...
In statistics, a confidence interval (CI) is a tool for estimating a parameter, such as the mean of a population. [1] To make a CI, an analyst first selects a confidence level , such as 95%. The analyst then follows a procedure that outputs an interval.
In applied fields the word "tight" is often used with the same meaning. [2] smooth Smoothness is a concept which mathematics has endowed with many meanings, from simple differentiability to infinite differentiability to analyticity, and still others which are more complicated. Each such usage attempts to invoke the physically intuitive notion ...
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
Greek letters (e.g. θ, β) are commonly used to denote unknown parameters (population parameters). [3]A tilde (~) denotes "has the probability distribution of". Placing a hat, or caret (also known as a circumflex), over a true parameter denotes an estimator of it, e.g., ^ is an estimator for .
In these hypothetical repetitions, independent data sets following the same probability distribution as the actual data are considered, and a confidence interval is computed from each of these data sets; see Neyman construction. The coverage probability is the fraction of these computed confidence intervals that include the desired but ...
Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".