enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heap's algorithm - Wikipedia

    en.wikipedia.org/wiki/Heap's_algorithm

    In a 1977 review of permutation-generating algorithms, Robert Sedgewick concluded that it was at that time the most effective algorithm for generating permutations by computer. [2] The sequence of permutations of n objects generated by Heap's algorithm is the beginning of the sequence of permutations of n+1 objects.

  3. Josephus problem - Wikipedia

    en.wikipedia.org/wiki/Josephus_problem

    In computer science and mathematics, the Josephus problem (or Josephus permutation) is a theoretical problem related to a certain counting-out game. Such games are used to pick out a person from a group, e.g. eeny, meeny, miny, moe. A drawing for the Josephus problem sequence for 500 people and skipping value of 6.

  4. Steinhaus–Johnson–Trotter algorithm - Wikipedia

    en.wikipedia.org/wiki/Steinhaus–Johnson...

    The ! permutations of the numbers from 1 to may be placed in one-to-one correspondence with the ! numbers from 0 to ! by pairing each permutation with the sequence of numbers that count the number of positions in the permutation that are to the right of value and that contain a value less than (that is, the number of inversions for which is the ...

  5. 15 puzzle - Wikipedia

    en.wikipedia.org/wiki/15_puzzle

    The exceptional graph is a regular hexagon with one diagonal and a vertex at the center added; only ⁠ 1 / 6 ⁠ of its permutations can be attained, which gives an instance of the exotic embedding of S 5 into S 6. For larger versions of the n puzzle, finding a solution is easy. But, the problem of finding the shortest solution is NP-hard.

  6. Permutation - Wikipedia

    en.wikipedia.org/wiki/Permutation

    It begins by sorting the sequence in (weakly) increasing order (which gives its lexicographically minimal permutation), and then repeats advancing to the next permutation as long as one is found. The method goes back to Narayana Pandita in 14th century India, and has been rediscovered frequently.

  7. Fisher–Yates shuffle - Wikipedia

    en.wikipedia.org/wiki/Fisher–Yates_shuffle

    The algorithm takes a list of all the elements of the sequence, and continually determines the next element in the shuffled sequence by randomly drawing an element from the list until no elements remain. [1] The algorithm produces an unbiased permutation: every permutation is equally likely.

  8. Lehmer code - Wikipedia

    en.wikipedia.org/wiki/Lehmer_code

    The usual way to prove that there are n! different permutations of n objects is to observe that the first object can be chosen in n different ways, the next object in n − 1 different ways (because choosing the same number as the first is forbidden), the next in n − 2 different ways (because there are now 2 forbidden values), and so forth ...

  9. Permutation pattern - Wikipedia

    en.wikipedia.org/wiki/Permutation_pattern

    In combinatorial mathematics and theoretical computer science, a (classical) permutation pattern is a sub-permutation of a longer permutation.Any permutation may be written in one-line notation as a sequence of entries representing the result of applying the permutation to the sequence 123...; for instance the sequence 213 represents the permutation on three elements that swaps elements 1 and 2.