Search results
Results from the WOW.Com Content Network
Cerebral achromatopsia occurs after injury to the lingual or fusiform gyrus, the areas associated with hV4. These injuries include physical trauma, stroke, and tumour growth. One of the primary initiatives to locating the colour centre in the visual cortex is to discover the cause and a possible treatment of cerebral achromatopsia.
Color processing in the extended V4 occurs in millimeter-sized color modules called globs. [30] [31] This is the part of the brain in which color is first processed into the full range of hues found in color space. [37] [30] [31] Anatomical studies have shown that neurons in extended V4 provide input to the inferior temporal lobe. "IT" cortex ...
Neuromelanin gives specific brain sections, such as the substantia nigra or the locus coeruleus, distinct color. It is a type of melanin and similar to other forms of peripheral melanin. It is insoluble in organic compounds, and can be labeled by silver staining. It is called neuromelanin because of its function and the color change that ...
The color of chemicals is a physical property of chemicals that in most cases comes from the excitation of electrons due to an absorption of energy performed by the chemical. The study of chemical structure by means of energy absorption and release is generally referred to as spectroscopy .
Visually, the interior of the brain consists of areas of so-called grey matter, with a dark color, separated by areas of white matter, with a lighter color. Further information can be gained by staining slices of brain tissue with a variety of chemicals that bring out areas where specific types of molecules are present in high concentrations.
Semantic associations are how people assign meaning to concepts and play a significant role in certain types of synesthesia, particularly in linguistic-based forms like grapheme-color synesthesia. In these cases, specific letters or words evoke colors, suggesting that semantic processing may link otherwise separate sensory experiences.
This is most apparent in grapheme-color synesthesia, because the brain regions for color processing and visual word form processing are adjacent. [17] Individuals with chromesthesia show activation of brain areas involved in visual processing, such as V4, immediately after the auditory perception, indicating an automatic linking of sounds and ...
If, for example, M cones could be excited alone, this would make the brain see an imaginary color greener than any physically possible green. Such a "hyper-green" color would be in the CIE 1931 color space chromaticity diagram in the blank area above the colored area and between the y axis and the line x+y=1. [citation needed]