enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fatigue limit - Wikipedia

    en.wikipedia.org/wiki/Fatigue_limit

    Representative curves of applied stress vs number of cycles for steel (showing an endurance limit) and aluminium (showing no such limit).. The fatigue limit or endurance limit is the stress level below which an infinite number of loading cycles can be applied to a material without causing fatigue failure. [1]

  3. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    Engineering stress and engineering strain are approximations to the internal state that may be determined from the external forces and deformations of an object, provided that there is no significant change in size. When there is a significant change in size, the true stress and true strain can be derived from the instantaneous size of the object.

  4. Material failure theory - Wikipedia

    en.wikipedia.org/wiki/Material_failure_theory

    The maximum stress criterion assumes that a material fails when the maximum principal stress in a material element exceeds the uniaxial tensile strength of the material. Alternatively, the material will fail if the minimum principal stress σ 3 {\displaystyle \sigma _{3}} is less than the uniaxial compressive strength of the material.

  5. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    A typical stress–strain curve for a brittle material will be linear. For some materials, such as concrete, tensile strength is negligible compared to the compressive strength and it is assumed to be zero for many engineering applications. Glass fibers have a tensile strength greater than

  6. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    Fig. 1: Critical stress vs slenderness ratio for steel, for E = 200 GPa, yield strength = 240 MPa. Euler's critical load or Euler's buckling load is the compressive load at which a slender column will suddenly bend or buckle. It is given by the formula: [1] = where

  7. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Stress analysis is specifically concerned with solid objects. The study of stresses in liquids and gases is the subject of fluid mechanics.. Stress analysis adopts the macroscopic view of materials characteristic of continuum mechanics, namely that all properties of materials are homogeneous at small enough scales.

  8. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress σ {\displaystyle \sigma } change sign, and the stress is called compressive ...

  9. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    The ultimate strength is the maximum stress that a material can withstand before it breaks or weakens. [12] For example, the ultimate tensile strength (UTS) of AISI 1018 Steel is 440 MPa. In Imperial units, the unit of stress is given as lbf/in 2 or pounds-force per square inch. This unit is often abbreviated as psi.