enow.com Web Search

  1. Ad

    related to: index laws in algebra

Search results

  1. Results from the WOW.Com Content Network
  2. Index notation - Wikipedia

    en.wikipedia.org/wiki/Index_notation

    A vector treated as an array of numbers by writing as a row vector or column vector (whichever is used depends on convenience or context): = (), = Index notation allows indication of the elements of the array by simply writing a i, where the index i is known to run from 1 to n, because of n-dimensions. [1]

  3. Raising and lowering indices - Wikipedia

    en.wikipedia.org/wiki/Raising_and_lowering_indices

    It is common convention to use greek indices when writing expressions involving tensors in Minkowski space, while Latin indices are reserved for Euclidean space. Well-formulated expressions are constrained by the rules of Einstein summation : any index may appear at most twice and furthermore a raised index must contract with a lowered index.

  4. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.

  5. Index of a subgroup - Wikipedia

    en.wikipedia.org/wiki/Index_of_a_subgroup

    A subgroup H of finite index in a group G (finite or infinite) always contains a normal subgroup N (of G), also of finite index. In fact, if H has index n, then the index of N will be some divisor of n! and a multiple of n; indeed, N can be taken to be the kernel of the natural homomorphism from G to the permutation group of the left (or right ...

  6. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    These are the three main logarithm laws/rules/principles, [3] from which the other properties listed above can be proven. Each of these logarithm properties correspond to their respective exponent law, and their derivations/proofs will hinge on those facts. There are multiple ways to derive/prove each logarithm law – this is just one possible ...

  7. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    where i is the index of summation; a i is an indexed variable representing each term of the sum; m is the lower bound of summation, and n is the upper bound of summation. The "i = m" under the summation symbol means that the index i starts out equal to m. The index, i, is incremented by one for each successive term, stopping when i = n. [b]

  8. Law (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Law_(mathematics)

    In mathematics, a law is a formula that is always true within a given context. [1] Laws describe a relationship , between two or more expressions or terms (which may contain variables ), usually using equality or inequality , [ 2 ] or between formulas themselves, for instance, in mathematical logic .

  9. Ricci calculus - Wikipedia

    en.wikipedia.org/wiki/Ricci_calculus

    The free indices in a tensor expression always appear in the same (upper or lower) position throughout every term, and in a tensor equation the free indices are the same on each side. Dummy indices (which implies a summation over that index) need not be the same, for example:

  1. Ad

    related to: index laws in algebra