Search results
Results from the WOW.Com Content Network
Neither the standard model of particle physics nor the theory of general relativity provides a known explanation for why this should be so, and it is a natural assumption that the universe is neutral with all conserved charges. [3] The Big Bang should have produced equal amounts of matter and antimatter. Since this does not seem to have been ...
All the particles that make up the matter around us, such electrons and protons, have antimatter versions which are nearly identical, but with mirrored properties such as the opposite electric charge.
The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...
In physical cosmology, baryogenesis (also known as baryosynthesis [1] [2]) is the physical process that is hypothesized to have taken place during the early universe to produce baryonic asymmetry, the observation that only matter and not antimatter (antibaryons) is detected in universe other than in cosmic ray collisions.
"Our understanding of the universe contains a lot of ignorance about two elements - dark matter and dark energy - and these make up 96% of the universe, so this is no small matter."
Antimatter may exist in relatively large amounts in far-away galaxies due to cosmic inflation in the primordial time of the universe. Antimatter galaxies, if they exist, are expected to have the same chemistry and absorption and emission spectra as normal-matter galaxies, and their astronomical objects would be observationally identical, making ...
The Big Bang should have produced equal amounts of matter and antimatter if CP-symmetry was preserved; as such, there should have been total cancellation of both—protons should have cancelled with antiprotons, electrons with positrons, neutrons with antineutrons, and so on. This would have resulted in a sea of radiation in the universe with ...
The four-dimension universe lies on one of the branes. The collision corresponds to the Big Crunch, then a Big Bang. The matter and radiation around us today are quantum fluctuations from before the branes. After several billion years, the universe has reached its modern state, and it will start contracting in another several billion years.