Search results
Results from the WOW.Com Content Network
The ratio of the theoretical yield and the actual yield results in a percent yield. [8] When more than one reactant participates in a reaction, the yield is usually calculated based on the amount of the limiting reactant, whose amount is less than stoichiometrically equivalent (or just equivalent) to the amounts of all other reactants present ...
A stoichiometric diagram of the combustion reaction of methane. Stoichiometry (/ ˌ s t ɔɪ k i ˈ ɒ m ɪ t r i / ⓘ) is the relationships between the masses of reactants and products before, during, and following chemical reactions.
The limiting reagent (or limiting reactant or limiting agent) in a chemical reaction is a reactant that is totally consumed when the chemical reaction is completed. [ 1 ] [ 2 ] The amount of product formed is limited by this reagent, since the reaction cannot continue without it.
Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...
A metric similar to reaction mass efficiency is the effective mass efficiency, as suggested by Hudlicky et al. [9] It is defined as the percentage of the mass of the desired product relative to the mass of all non-benign reagents used in its synthesis. The reagents here may include any used reactant, solvent or catalyst.
where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...
Atom economy. Atom economy (atom efficiency/percentage) is the conversion efficiency of a chemical process in terms of all atoms involved and the desired products produced. The simplest definition was introduced by Barry Trost in 1991 and is equal to the ratio between the mass of desired product to the total mass of reactants, expressed as a percentage.
The amount produced by chemical synthesis is known as the reaction yield. Typically, yields are expressed as a mass in grams (in a laboratory setting) or as a percentage of the total theoretical quantity that could be produced based on the limiting reagent. [2] A side reaction is an