Search results
Results from the WOW.Com Content Network
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
Let G be a graph with vertex set V. Let F be a field, and f a function from V to F k such that xy is an edge of G if and only if f(x)·f(y) ≥ t. This is the dot product representation of G. The number t is called the dot product threshold, and the smallest possible value of k is called the dot product dimension. [1]
D: divergence, C: curl, G: gradient, L: Laplacian, CC: curl of curl. Each arrow is labeled with the result of an identity, specifically, the result of applying the operator at the arrow's tail to the operator at its head. The blue circle in the middle means curl of curl exists, whereas the other two red circles (dashed) mean that DD and GG do ...
Definition and notation: When we write f : D(f) ⊆ X → Y then we mean that f is a Y-valued function with domain D(f) where D(f) ⊆ X. If we say that f : D(f) ⊆ X → Y is closed (resp. sequentially closed) or has a closed graph (resp. has a sequentially closed graph) then we mean that the graph of f is closed (resp. sequentially closed ...
Isaac Newton's notation for differentiation (also called the dot notation, fluxions, or sometimes, crudely, the flyspeck notation [12] for differentiation) places a dot over the dependent variable. That is, if y is a function of t , then the derivative of y with respect to t is
The functions g and f are said to commute with each other if g ∘ f = f ∘ g. Commutativity is a special property, attained only by particular functions, and often in special circumstances. For example, | x | + 3 = | x + 3 | only when x ≥ 0. The picture shows another example. The composition of one-to-one (injective) functions is always one ...
A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).
The given functions (f, g) may be discontinuous, provided that they are locally integrable (on the given interval). In this case, Lebesgue integration is meant, the conclusions hold almost everywhere (thus, in all continuity points), and differentiability of g is interpreted as local absolute continuity (rather than continuous differentiability).