Search results
Results from the WOW.Com Content Network
Glutamate is a very major constituent of a wide variety of proteins; consequently it is one of the most abundant amino acids in the human body. [1] Glutamate is formally classified as a non-essential amino acid, because it can be synthesized (in sufficient quantities for health) from α-ketoglutaric acid, which is produced as part of the citric acid cycle by a series of reactions whose ...
Glutamate (the conjugate base of glutamic acid) is abundant in the human body, but particularly in the nervous system and especially prominent in the human brain where it is the body's most prominent neurotransmitter, the brain's main excitatory neurotransmitter, and also the precursor for GABA, the brain's main inhibitory neurotransmitter. [2]
Glutamate also plays an important role in the body's disposal of excess or waste nitrogen. Glutamate undergoes deamination, an oxidative reaction catalysed by glutamate dehydrogenase, [17] as follows: glutamate + H 2 O + NADP + → α-ketoglutarate + NADPH + NH 3 + H + Ammonia (as ammonium) is then excreted predominantly as urea, synthesised in ...
Glutamate transporters are a family of neurotransmitter transporter proteins that move glutamate – the principal excitatory neurotransmitter – across a membrane.The family of glutamate transporters is composed of two primary subclasses: the excitatory amino acid transporter (EAAT) family and vesicular glutamate transporter (VGLUT) family.
The glutamate/GABA–glutamine cycle is a metabolic pathway that describes the release of either glutamate or GABA from neurons which is then taken up into astrocytes (non-neuronal glial cells). In return, astrocytes release glutamine to be taken up into neurons for use as a precursor to the synthesis of either glutamate or GABA.
It is classified as a charge-neutral, polar amino acid. It is non-essential and conditionally essential in humans, meaning the body can usually synthesize sufficient amounts of it, but in some instances of stress, the body's demand for glutamine increases, and glutamine must be obtained from the diet. [4] [5] It is encoded by the codons CAA and ...
There are several families that function in amino acid transport, some of these include: ... high affinity glutamate and neutral amino acid transporter [1] (3) ...
Glutamate + ATP + NH 3 → Glutamine + ADP + phosphate Glutamine synthetase catalyzed reaction. Glutamine synthetase uses ammonia produced by nitrate reduction, amino acid degradation, and photorespiration. [4] The amide group of glutamate is a nitrogen source for the synthesis of glutamine pathway metabolites. [5] Other reactions may take ...