Search results
Results from the WOW.Com Content Network
The aerodynamic center is the point at which the pitching moment coefficient for the airfoil does not vary with lift coefficient (i.e. angle of attack), making analysis simpler. [ 1 ] d C m d C L = 0 {\displaystyle {dC_{m} \over dC_{L}}=0} where C L {\displaystyle C_{L}} is the aircraft lift coefficient .
The center of pressure of an aircraft is the point where all of the aerodynamic pressure field may be represented by a single force vector with no moment. [ 3 ] [ 4 ] A similar idea is the aerodynamic center which is the point on an airfoil where the pitching moment produced by the aerodynamic forces is constant with angle of attack .
Center of pressure – is the point where the total sum of a pressure field acts on a body, causing a force to act through that point. Centrifugal compressor – Centrifugal compressors , sometimes called radial compressors , are a sub-class of dynamic axisymmetric work-absorbing turbomachinery . [ 41 ]
aerodynamic jump (the vertical component of cross wind deflection caused by lateral (wind) impulses activated during free flight or at or very near the muzzle leading to dynamic imbalance) [57] lateral throw-off (dispersion that is caused by mass imbalance in the applied projectile or it leaving the barrel off axis leading to static imbalance)
Pitching moment coefficient is fundamental to the definition of aerodynamic center of an airfoil. The aerodynamic center is defined to be the point on the chord line of the airfoil at which the pitching moment coefficient does not vary with angle of attack, [1]: Section 5.10 or at least does not vary significantly over the operating range of ...
All the three aerodynamic coefficients are integrals of the pressure coefficient curve along the chord. The coefficient of lift for a two-dimensional airfoil section with strictly horizontal surfaces can be calculated from the coefficient of pressure distribution by integration, or calculating the area between the lines on the distribution.
The center of mass of a body with an axis of symmetry and constant density must lie on this axis. Thus, the center of mass of a circular cylinder of constant density has its center of mass on the axis of the cylinder. In the same way, the center of mass of a spherically symmetric body of constant density is at the center of the sphere.
The aerodynamic force is the resultant vector from adding the lift vector, perpendicular to the flow direction, and the drag vector, parallel to the flow direction. Forces on an aerofoil . In fluid mechanics , an aerodynamic force is a force exerted on a body by the air (or other gas ) in which the body is immersed, and is due to the relative ...