Search results
Results from the WOW.Com Content Network
The ordinary binomial distribution is a special case of the Poisson binomial distribution, when all success probabilities are the same, that is = = =. Definitions [ edit ]
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
In probability theory, the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution, under certain conditions. [1] The theorem was named after Siméon Denis Poisson (1781–1840). A generalization of this theorem is Le Cam's theorem
The (a,b,0) class of distributions is also known as the Panjer, [1] [2] the Poisson-type or the Katz family of distributions, [3] [4] and may be retrieved through the Conway–Maxwell–Poisson distribution. Only the Poisson, binomial and negative binomial distributions satisfy the full form of this
The binomial distribution converges towards the Poisson distribution as the number of trials goes to infinity while the product np converges to a finite limit. Therefore, the Poisson distribution with parameter λ = np can be used as an approximation to B( n , p ) of the binomial distribution if n is sufficiently large and p is sufficiently small.
A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables. Negative binomial regression is a popular generalization of Poisson regression because it loosens the highly restrictive assumption that the variance is equal to the mean made by the Poisson model. The traditional negative ...
In an Akron Police dispatcher call obtained by WOIO-TV, the Good Samaritan told police that they had found the girl walking naked and said that the young girl told them somebody “jumped her and ...
In mathematics, a super-Poissonian distribution is a probability distribution that has a larger variance than a Poisson distribution with the same mean. [1] Conversely, a sub-Poissonian distribution has a smaller variance. An example of super-Poissonian distribution is negative binomial distribution. [2]