Search results
Results from the WOW.Com Content Network
Importantly, under low-oxygen (anaerobic) conditions, glycolysis is the only biochemical pathway in eukaryotes that can generate ATP, and, for many anaerobic respiring organisms the most important producer of ATP. [7] Therefore, many organisms have evolved fermentation pathways to recycle NAD + to continue glycolysis to produce ATP for survival.
Fates of pyruvate under anaerobic conditions: Pyruvate is the terminal electron acceptor in lactic acid fermentation. When sufficient oxygen is not present in the muscle cells for further oxidation of pyruvate and NADH produced in glycolysis, NAD+ is regenerated from NADH by reduction of pyruvate to lactate. [4] Lactate is converted to pyruvate ...
Cori cycle. The Cori cycle (also known as the lactic acid cycle), named after its discoverers, Carl Ferdinand Cori and Gerty Cori, [1] is a metabolic pathway in which lactate, produced by anaerobic glycolysis in muscles, is transported to the liver and converted to glucose, which then returns to the muscles and is cyclically metabolized back to lactate.
Pyruvate, the conjugate base, CH 3 COCOO −, is an intermediate in several metabolic pathways throughout the cell. Pyruvic acid can be made from glucose through glycolysis , converted back to carbohydrates (such as glucose) via gluconeogenesis , or converted to fatty acids through a reaction with acetyl-CoA . [ 3 ]
Following glycolysis, the citric acid cycle is activated by the production of acetyl-CoA. The oxidation of pyruvate by pyruvate dehydrogenase in the matrix produces CO 2, acetyl-CoA, and NADH. Beta oxidation of fatty acids serves as an alternate catabolic pathway that produces acetyl-CoA, NADH, and FADH 2. [1]
Obligate anaerobes convert nutrients into energy through anaerobic respiration or fermentation. In aerobic respiration, the pyruvate generated from glycolysis is converted to acetyl-CoA. This is then broken down via the TCA cycle and electron transport chain.
Under anaerobic conditions, a glycolysis reaction takes place where glucose is converted into pyruvate: glucose → 2 pyruvate There is a net production of 2 ATP and 2 NADH molecules per molecule of glucose converted. ATP is generated by substrate-level phosphorylation. NADH is formed from the reduction of NAD.
When the O 2 concentration is low, the two pyruvate molecules formed through glycolysis are each fermented into ethanol and carbon dioxide. While only 2 ATP are produced per glucose, this method is utilized under anaerobic conditions because it oxidizes the electron shuttle NADH into NAD + for another round of glycolysis and ethanol fermentation.