Search results
Results from the WOW.Com Content Network
In experimental psychology, the RMSD is used to assess how well mathematical or computational models of behavior explain the empirically observed behavior. In GIS, the RMSD is one measure used to assess the accuracy of spatial analysis and remote sensing. In hydrogeology, RMSD and NRMSD are used to evaluate the calibration of a groundwater ...
Typically RMSD is used as a quantitative measure of similarity between two or more protein structures. For example, the CASP protein structure prediction competition uses RMSD as one of its assessments of how well a submitted structure matches the known, target structure. Thus the lower RMSD, the better the model is in comparison to the target ...
The probability density function (PDF) for a particle in one dimension is found by solving the one-dimensional diffusion equation. (This equation states that the position probability density diffuses out over time - this is the method used by Einstein to describe a Brownian particle.
The same principle applies, and (for example) a current of 10 amps used for 12 hours each 24-hour day represents an average current of 5 amps, but an RMS current of 7.07 amps, in the long term. The term RMS power is sometimes erroneously used (e.g., in the audio industry) as a synonym for mean power or average power (it is proportional to the ...
Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:
The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).
MD was originally developed in the early 1950s, following earlier successes with Monte Carlo simulations—which themselves date back to the eighteenth century, in the Buffon's needle problem for example—but was popularized for statistical mechanics at Los Alamos National Laboratory by Marshall Rosenbluth and Nicholas Metropolis in what is known today as the Metropolis–Hastings algorithm.
In probability theory and statistics, the coefficient of variation (CV), also known as normalized root-mean-square deviation (NRMSD), percent RMS, and relative standard deviation (RSD), is a standardized measure of dispersion of a probability distribution or frequency distribution.