enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Snub disphenoid - Wikipedia

    en.wikipedia.org/wiki/Snub_disphenoid

    This shape is also called Siamese dodecahedron, triangular dodecahedron, trigonal dodecahedron, or dodecadeltahedron. The snub disphenoid can be visualized as an atom cluster surrounding a central atom, that is the dodecahedral molecular geometry .

  3. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    Alternatively, if you expand each of five cubes by moving the faces away from the origin the right amount and rotating each of the five 72° around so they are equidistant from each other, without changing the orientation or size of the faces, and patch the pentagonal and triangular holes in the result, you get a rhombicosidodecahedron ...

  4. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Compound of small stellated dodecahedron and great dodecahedron; Compound of ten hexagonal prisms; Compound of ten octahedra; Compound of ten tetrahedra; Compound of ten triangular prisms; Compound of ten truncated tetrahedra; Compound of three cubes; Compound of three tetrahedra; Compound of twelve pentagonal antiprisms with rotational freedom

  5. Disdyakis triacontahedron - Wikipedia

    en.wikipedia.org/wiki/Disdyakis_triacontahedron

    It has the most faces among the Archimedean and Catalan solids, with the snub dodecahedron, with 92 faces, in second place. If the bipyramids, the gyroelongated bipyramids, and the trapezohedra are excluded, the disdyakis triacontahedron has the most faces of any other strictly convex polyhedron where every face of the polyhedron has the same ...

  6. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    For example, the icosahedron is {3,5+} 1,0, and pentakis dodecahedron, {3,5+} 1,1 is seen as a regular dodecahedron with pentagonal faces divided into 5 triangles. The primary face of the subdivision is called a principal polyhedral triangle (PPT) or the breakdown structure. Calculating a single PPT allows the entire figure to be created.

  7. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    The concave equilateral dodecahedron, called an endo-dodecahedron. [clarification needed] A cube can be divided into a pyritohedron by bisecting all the edges, and faces in alternate directions. A regular dodecahedron is an intermediate case with equal edge lengths. A rhombic dodecahedron is a degenerate case with the 6 crossedges reduced to ...

  8. Deltoidal icositetrahedron - Wikipedia

    en.wikipedia.org/wiki/Deltoidal_icositetrahedron

    A variant with pyritohedral symmetry is called a dyakis dodecahedron [5] [6] or diploid. [7] It is common in crystallography. A dyakis dodecahedron can be created by enlarging 24 of the 48 faces of a disdyakis dodecahedron. A tetartoid can be created by enlarging 12 of the 24 faces of a dyakis dodecahedron. 3D model of a dyakis dodecahedron [8]

  9. Rhombic triacontahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_triacontahedron

    Let φ be the golden ratio.The 12 points given by (0, ±1, ±φ) and cyclic permutations of these coordinates are the vertices of a regular icosahedron.Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the 8 points (±1, ±1, ±1) together with the 12 points (0, ±φ, ± ⁠ 1 / φ ⁠) and cyclic permutations of these coordinates.