Search results
Results from the WOW.Com Content Network
cqn [35] is a normalization tool for RNA-Seq data, implementing the conditional quantile normalization method. EDASeq [36] is a Bioconductor package to perform GC-Content Normalization for RNA-Seq Data. GeneScissors A comprehensive approach to detecting and correcting spurious transcriptome inference due to RNAseq reads misalignment.
There is so far no standardized technique to generate single-cell data: all methods must include cell isolation from the population, lysate formation, amplification through reverse transcription and quantification of expression levels. Common techniques for measuring expression are quantitative PCR or RNA-seq. [6]
Single-cell RNA sequencing (scRNA-Seq) provides the expression profiles of individual cells. Although it is not possible to obtain complete information on every RNA expressed by each cell, due to the small amount of material available, patterns of gene expression can be identified through gene clustering analyses. This can uncover the existence ...
Small RNA sequencing (Small RNA-Seq) is a type of RNA sequencing based on the use of NGS technologies that allows to isolate and get information about noncoding RNA molecules in order to evaluate and discover new forms of small RNA and to predict their possible functions.
A small conditional RNA (scRNA) is a small RNA molecule or complex (typically less than approximately 100 nt) engineered to interact and change conformation conditionally in response to cognate molecular inputs so as to perform signal transduction in vitro, in situ, or in vivo.
Strand-seq overcomes limitations of methods based on whole genome amplification for genetic variant calling: Since Strand-seq does not require reads (or read pairs) transversing the boundaries (or breakpoints) of CNVs or copy-balanced structural variant classes, it is less susceptible to common artefacts of single-cell methods based on whole ...
DESeq2 is a software package in the field of bioinformatics and computational biology for the statistical programming language R.It is primarily employed for the analysis of high-throughput RNA sequencing (RNA-seq) data to identify differentially expressed genes between different experimental conditions.
snRNA-seq uses isolated nuclei instead of the entire cells to profile gene expression. That is to say, scRNA-seq measures both cytoplasmic and nuclear transcripts, while snRNA-seq mainly measures nuclear transcripts (though some transcripts might be attached to the rough endoplasmic reticulum and partially preserved in nuclear preps). [7]