enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Block swap algorithms - Wikipedia

    en.wikipedia.org/wiki/Block_swap_algorithms

    A rotation is an in-place reversal of array elements. This method swaps two elements of an array from outside in within a range. The rotation works for an even or odd number of array elements. The reversal algorithm uses three in-place rotations to accomplish an in-place block swap: Rotate region A; Rotate region B; Rotate region AB

  3. Lexicographically minimal string rotation - Wikipedia

    en.wikipedia.org/wiki/Lexicographically_minimal...

    Of interest is that removing all lines of code which modify the value of k results in the original Knuth-Morris-Pratt preprocessing function, as k (representing the rotation) will remain zero. Booth's algorithm runs in ⁠ O ( n ) {\displaystyle O(n)} ⁠ time, where n is the length of the string.

  4. Kabsch algorithm - Wikipedia

    en.wikipedia.org/wiki/Kabsch_algorithm

    Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:

  5. Coin rotation paradox - Wikipedia

    en.wikipedia.org/wiki/Coin_rotation_paradox

    The outer coin makes two rotations rolling once around the inner coin. The path of a single point on the edge of the moving coin is a cardioid.. The coin rotation paradox is the counter-intuitive math problem that, when one coin is rolled around the rim of another coin of equal size, the moving coin completes not one but two full rotations after going all the way around the stationary coin ...

  6. Heap's algorithm - Wikipedia

    en.wikipedia.org/wiki/Heap's_algorithm

    A map of the 24 permutations and the 23 swaps used in Heap's algorithm permuting the four letters A (amber), B (blue), C (cyan) and D (dark red) Wheel diagram of all permutations of length = generated by Heap's algorithm, where each permutation is color-coded (1=blue, 2=green, 3=yellow, 4=red).

  7. Fisher–Yates shuffle - Wikipedia

    en.wikipedia.org/wiki/Fisher–Yates_shuffle

    The regular algorithm requires an n-entry array initialized with the input values, but then requires only k iterations to choose a random sample of k elements. Thus, it takes O(k) time and n space. The inside-out algorithm can be implemented using only a k-element array a. Elements a[i] for i ≥ k are simply not stored.

  8. In-place matrix transposition - Wikipedia

    en.wikipedia.org/wiki/In-place_matrix_transposition

    Pseudocode to accomplish this (assuming zero-based array indices) is: for n = 0 to N - 1 for m = n + 1 to N swap A(n,m) with A(m,n) This type of implementation, while simple, can exhibit poor performance due to poor cache-line utilization, especially when N is a power of two (due to cache-line conflicts in a CPU cache with limited associativity).

  9. Stack (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Stack_(abstract_data_type)

    Rotate (or Roll): the n topmost items are moved on the stack in a rotating fashion. For example, if n = 3, items 1, 2, and 3 on the stack are moved to positions 2, 3, and 1 on the stack, respectively. Many variants of this operation are possible, with the most common being called left rotate and right rotate.