enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discrete optimization - Wikipedia

    en.wikipedia.org/wiki/Discrete_optimization

    constraint programming These branches are all closely intertwined however, since many combinatorial optimization problems can be modeled as integer programs (e.g. shortest path ) or constraint programs, any constraint program can be formulated as an integer program and vice versa, and constraint and integer programs can often be given a ...

  3. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    The idea is to substitute the constraint into the objective function to create a composite function that incorporates the effect of the constraint. For example, assume the objective is to maximize f ( x , y ) = x ⋅ y {\displaystyle f(x,y)=x\cdot y} subject to x + y = 10 {\displaystyle x+y=10} .

  4. SAT solver - Wikipedia

    en.wikipedia.org/wiki/SAT_solver

    In computer science and formal methods, a SAT solver is a computer program which aims to solve the Boolean satisfiability problem.On input a formula over Boolean variables, such as "(x or y) and (x or not y)", a SAT solver outputs whether the formula is satisfiable, meaning that there are possible values of x and y which make the formula true, or unsatisfiable, meaning that there are no such ...

  5. Test functions for optimization - Wikipedia

    en.wikipedia.org/wiki/Test_functions_for...

    The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [ 7 ] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [ 8 ] which implements the NSGA-II procedure with ES.

  6. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    When the objective function is twice differentiable, these cases can be distinguished by checking the second derivative or the matrix of second derivatives (called the Hessian matrix) in unconstrained problems, or the matrix of second derivatives of the objective function and the constraints called the bordered Hessian in

  7. Constraint (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Constraint_(mathematics)

    If an inequality constraint holds with equality at the optimal point, the constraint is said to be binding, as the point cannot be varied in the direction of the constraint even though doing so would improve the value of the objective function. If an inequality constraint holds as a strict inequality at the optimal point (that is, does not hold ...

  8. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints. [ 4 ] [ 5 ] Curve fitting can involve either interpolation , [ 6 ] [ 7 ] where an exact fit to the data is required, or smoothing , [ 8 ] [ 9 ] in which a "smooth ...

  9. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The basic idea is to convert a constrained problem into a form such that the derivative test of an unconstrained problem can still be applied. The relationship between the gradient of the function and gradients of the constraints rather naturally leads to a reformulation of the original problem, known as the Lagrangian function or Lagrangian. [2]