Search results
Results from the WOW.Com Content Network
The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ ( r ) = ρ 0 − ( ρ 0 − ρ 1 ) r / R , and the ...
[2] [3] [4] Because of the unit conventions then in use, the gravitational constant does not appear explicitly in Cavendish's work. Instead, the result was originally expressed as the relative density of Earth, [5] or equivalently the mass of Earth. His experiment gave the first accurate values for these geophysical constants.
A volume of low density, 2, reduces g, while high-density material, 3, increases g. Gravimeters for measuring the Earth's gravity as precisely as possible are getting smaller and more portable. A common type measures the acceleration of small masses free falling in a vacuum , when the accelerometer is firmly attached to the ground.
The Schiehallion experiment, proposed in 1772 and completed in 1776, was the first successful measurement of the mean density of the Earth, and thus indirectly of the gravitational constant. The result reported by Charles Hutton (1778) suggested a density of 4.5 g/cm 3 (4 + 1 / 2 times the density of water), about 20% below the modern ...
If Earth's shape were perfectly known together with the exact mass density ρ = ρ(x, y, z), it could be integrated numerically (when combined with a reciprocal distance kernel) to find an accurate model for Earth's gravitational field. However, the situation is in fact the opposite: by observing the orbits of spacecraft and the Moon, Earth's ...
rad/s is the diurnal angular speed of the Earth axis, and km the radius of the reference sphere, and the distance of the point on the Earth crust to the Earth axis. [3] For the mass attraction effect by itself, the gravitational acceleration at the equator is about 0.18% less than that at the poles due to being located farther from the mass ...
A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.
From this it follows that the average density of Earth is approximately 1.8 times the density of the mountain. [15] [18] [19] Hutton took a density of 2,500 kg·m −3 for Schiehallion, and announced that the density of the Earth was 1.8 times this, or 4,500 kg·m −3, [18] less than 20% away from the modern value of 5,515 kg·m −3. [20]