enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lorentz factor - Wikipedia

    en.wikipedia.org/wiki/Lorentz_factor

    Definition of the Lorentz factor γ. The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in ...

  3. Lorentz transformation - Wikipedia

    en.wikipedia.org/wiki/Lorentz_transformation

    where v is the relative velocity between frames in the x-direction, c is the speed of light, and = (lowercase gamma) is the Lorentz factor. Here, v is the parameter of the transformation, for a given boost it is a constant number, but can take a continuous range of values.

  4. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    The following notations are used very often in special relativity: Lorentz factor = where = and v is the relative velocity between two inertial frames.. For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames.

  5. Derivations of the Lorentz transformations - Wikipedia

    en.wikipedia.org/wiki/Derivations_of_the_Lorentz...

    At any time after t = t′ = 0, xx′ is not zero, so dividing both sides of the equation by xx′ results in =, which is called the "Lorentz factor". When the transformation equations are required to satisfy the light signal equations in the form x = ct and x′ = ct′, by substituting the x and x'-values, the same technique produces the same ...

  6. Length contraction - Wikipedia

    en.wikipedia.org/wiki/Length_contraction

    Replacing the Lorentz factor in the original formula leads to the relation = / In this equation both and are measured parallel to the object's line of movement. For the observer in relative movement, the length of the object is measured by subtracting the simultaneously measured distances of both ends of the object.

  7. Time dilation - Wikipedia

    en.wikipedia.org/wiki/Time_dilation

    Time dilation by the Lorentz factor was predicted by several authors at the turn of the 20th century. [3] [4] Joseph Larmor (1897) wrote that, at least for those orbiting a nucleus, individual electrons describe corresponding parts of their orbits in times shorter for the [rest] system in the ratio: . [5]

  8. Ultrarelativistic limit - Wikipedia

    en.wikipedia.org/wiki/Ultrarelativistic_limit

    Notations commonly used are or or where is the Lorentz factor, = / and is the speed of light. The energy of an ultrarelativistic particle is almost completely due to its kinetic energy E k = ( γ − 1 ) m c 2 {\displaystyle E_{k}=(\gamma -1)mc^{2}} .

  9. Four-momentum - Wikipedia

    en.wikipedia.org/wiki/Four-momentum

    Calculating the Minkowski norm squared of the four-momentum gives a Lorentz invariant quantity equal (up to factors of the speed of light c) to the square of the particle's proper mass: = = = + | | = where = is the metric tensor of special relativity with metric signature for definiteness chosen to be (–1, 1, 1, 1).