enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    The following Python code can also be used to calculate and plot the root locus of the closed-loop transfer function using the Python Control Systems Library [14] and Matplotlib [15]. import control as ct import matplotlib.pyplot as plt # Define the transfer function sys = ct .

  3. Iso-damping - Wikipedia

    en.wikipedia.org/wiki/Iso-damping

    Bode's ideal control loop frequency response has the fractional integrator shape and provides the iso-damping property around the gain crossover frequency. This is due to the fact that the phase margin and the maximum overshoot are defined by one parameter only (the fractional power of ), and are independent of open-loop gain. Bode's ideal loop ...

  4. Bode's sensitivity integral - Wikipedia

    en.wikipedia.org/wiki/Bode's_sensitivity_integral

    Bode's sensitivity integral, discovered by Hendrik Wade Bode, is a formula that quantifies some of the limitations in feedback control of linear parameter invariant systems. Let L be the loop transfer function and S be the sensitivity function. In the diagram, P is a dynamical process that has a transfer function P(s).

  5. H-infinity methods in control theory - Wikipedia

    en.wikipedia.org/wiki/H-infinity_methods_in...

    The phrase H ∞ control comes from the name of the mathematical space over which the optimization takes place: H ∞ is the Hardy space of matrix-valued functions that are analytic and bounded in the open right-half of the complex plane defined by Re(s) > 0; the H ∞ norm is the supremum singular value of the matrix over that space.

  6. Boole's rule - Wikipedia

    en.wikipedia.org/wiki/Boole's_rule

    (defun integrate-composite-booles-rule (f a b n) "Calculates the composite Boole's rule numerical integral of the function F in the closed interval extending from inclusive A to inclusive B across N subintervals."

  7. Sensitivity (control systems) - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_(control_systems)

    A basic closed loop control system, using unity negative feedback. C(s) and G(s) denote compensator and plant transfer functions, respectively. Let () and () denote the plant and controller's transfer function in a basic closed loop control system written in the Laplace domain using unity negative feedback.

  8. Phase margin - Wikipedia

    en.wikipedia.org/wiki/Phase_margin

    Phase margin and gain margin are two measures of stability for a feedback control system. They indicate how much the gain or the phase of the system can vary before it becomes unstable. Phase margin is the difference (expressed as a positive number) between 180° and the phase shift where the magnitude of the loop transfer function is 0 dB.

  9. Robust control - Wikipedia

    en.wikipedia.org/wiki/Robust_control

    The control laws may be represented by high order transfer functions required to simultaneously accomplish desired disturbance rejection performance with the robust closed-loop operation. High-gain feedback is the principle that allows simplified models of operational amplifiers and emitter-degenerated bipolar transistors to be used in a ...