Search results
Results from the WOW.Com Content Network
[1]: 117 The formula above is known as the Langevin paramagnetic equation. Pierre Curie found an approximation to this law that applies to the relatively high temperatures and low magnetic fields used in his experiments. As temperature increases and magnetic field decreases, the argument of the hyperbolic tangent decreases.
The beta of a plasma, symbolized by β, is the ratio of the plasma pressure (p = n k B T) to the magnetic pressure (p mag = B 2 /2μ 0).The term is commonly used in studies of the Sun and Earth's magnetic field, and in the field of fusion power designs.
A generalization of the Landauer formula for multiple terminals is the Landauer–Büttiker formula, [5] [4] proposed by Markus Büttiker [].If terminal has voltage (that is, its chemical potential is and differs from terminal chemical potential), and , is the sum of transmission probabilities from terminal to terminal (note that , may or may not equal , depending on the presence of a magnetic ...
Compounds at temperatures below the Curie temperature exhibit long-range magnetic order in the form of ferromagnetism. Another critical temperature is the Néel temperature, below which antiferromagnetism occurs. The hexahydrate of nickel chloride, NiCl 2 ·6H 2 O, has a Néel temperature of 8.3 K. The susceptibility is a maximum at this ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
Schematic view of the different current systems which shape the Earth's magnetosphere. In many MHD systems most of the electric current is compressed into thin nearly-two-dimensional ribbons termed current sheets. [10] These can divide the fluid into magnetic domains, inside of which the currents are relatively weak.
In physics and materials science, the Curie temperature (T C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie temperature is named after Pierre Curie, who showed that magnetism is lost at a critical temperature. [1]
There are two London equations when expressed in terms of measurable fields: =, =. Here is the (superconducting) current density, E and B are respectively the electric and magnetic fields within the superconductor, is the charge of an electron or proton, is electron mass, and is a phenomenological constant loosely associated with a number density of superconducting carriers.