Search results
Results from the WOW.Com Content Network
[1]: 117 The formula above is known as the Langevin paramagnetic equation. Pierre Curie found an approximation to this law that applies to the relatively high temperatures and low magnetic fields used in his experiments. As temperature increases and magnetic field decreases, the argument of the hyperbolic tangent decreases.
An experimental problem that distinguishes magnetic systems from other thermodynamical systems is that the magnetic moment can't be constrained. Typically in thermodynamic systems, all extensive quantities describing the system can be constrained to a specified value.
Schematic view of the different current systems which shape the Earth's magnetosphere. In many MHD systems most of the electric current is compressed into thin nearly-two-dimensional ribbons termed current sheets. [10] These can divide the fluid into magnetic domains, inside of which the currents are relatively weak.
In physics and materials science, the Curie temperature (T C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie temperature is named after Pierre Curie, who showed that magnetism is lost at a critical temperature. [1]
Magnetic reconnection is a breakdown of "ideal-magnetohydrodynamics" and so of "Alfvén's theorem" (also called the "frozen-in flux theorem") which applies to large-scale regions of a highly-conducting magnetoplasma, for which the Magnetic Reynolds Number is very large: this makes the convective term in the induction equation dominate in such regions.
A transport equation, usually of heat (sometimes of light element concentration): = + where T is temperature, = / is the thermal diffusivity with k thermal conductivity, heat capacity, and density, and is an optional heat source. Often the pressure is the dynamic pressure, with the hydrostatic pressure and centripetal potential removed.
The highest temperature under which the superconducting state is seen is known as the critical temperature. At that temperature even the weakest external magnetic field will destroy the superconducting state, so the strength of the critical field is zero. As temperature decreases, the critical field increases generally to a maximum at absolute ...
The thermodynamic limit is essentially a consequence of the central limit theorem of probability theory. The internal energy of a gas of N molecules is the sum of order N contributions, each of which is approximately independent, and so the central limit theorem predicts that the ratio of the size of the fluctuations to the mean is of order 1/N 1/2.