enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. von Mises yield criterion - Wikipedia

    en.wikipedia.org/wiki/Von_Mises_yield_criterion

    As shown later in this article, at the onset of yielding, the magnitude of the shear yield stress in pure shear is √3 times lower than the tensile yield stress in the case of simple tension. Thus, we have: = where is tensile yield strength of the material. If we set the von Mises stress equal to the yield strength and combine the above ...

  3. Yield (engineering) - Wikipedia

    en.wikipedia.org/wiki/Yield_(engineering)

    The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing ...

  4. Wear coefficient - Wikipedia

    en.wikipedia.org/wiki/Wear_coefficient

    The volume or weight loss is initially curvilinear. The wear rate per unit sliding distance in the transient wear regime decreases until it has reached a constant value in the steady-state wear regime. Hence the standard wear coefficient value obtained from a volume loss versus distance curve is a function of the sliding distance. [3]

  5. Herschel–Bulkley fluid - Wikipedia

    en.wikipedia.org/wiki/Herschel–Bulkley_fluid

    The Herschel–Bulkley fluid is a generalized model of a non-Newtonian fluid, in which the strain experienced by the fluid is related to the stress in a complicated, non-linear way. Three parameters characterize this relationship: the consistency k, the flow index n, and the yield shear stress . The consistency is a simple constant of ...

  6. Factor of safety - Wikipedia

    en.wikipedia.org/wiki/Factor_of_safety

    The yield calculation will determine the safety factor until the part starts to deform plastically. The ultimate calculation will determine the safety factor until failure. In brittle materials the yield and ultimate strengths are often so close as to be indistinguishable, so it is usually acceptable to only calculate the ultimate safety factor.

  7. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...

  8. Material failure theory - Wikipedia

    en.wikipedia.org/wiki/Material_failure_theory

    This assumes that yield occurs when the shear stress exceeds the shear yield strength τ = σ 1 − σ 3 2 ≤ τ y . {\displaystyle \tau ={\frac {\sigma _{1}-\sigma _{3}}{2}}\leq \tau _{y}.\,\!} Total strain energy theory – This theory assumes that the stored energy associated with elastic deformation at the point of yield is independent of ...

  9. Johnson's parabolic formula - Wikipedia

    en.wikipedia.org/wiki/Johnson's_parabolic_formula

    Certain material properties of aluminum 2024 have been determined experimentally, such as the tensile yield strength (324 MPa) and the modulus of elasticity (73.1 GPa). [ 6 ] The Euler formula could be used to plot a failure curve, but it would not be accurate below a certain l k {\displaystyle {\frac {l}{k}}} value, the critical slenderness ratio.